3.94.61 \(\int \frac {32-8 x+(-8+8 x) \log (-1+x)}{-16+24 x-9 x^2+x^3} \, dx\)

Optimal. Leaf size=13 \[ \frac {8 \log (-1+x)}{4-x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {6742, 616, 31, 2395, 36} \begin {gather*} \frac {8 \log (x-1)}{4-x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(32 - 8*x + (-8 + 8*x)*Log[-1 + x])/(-16 + 24*x - 9*x^2 + x^3),x]

[Out]

(8*Log[-1 + x])/(4 - x)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 616

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/Simp
[b/2 - q/2 + c*x, x], x], x] - Dist[c/q, Int[1/Simp[b/2 + q/2 + c*x, x], x], x]] /; FreeQ[{a, b, c}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c] && PerfectSquareQ[b^2 - 4*a*c]

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {8}{4-5 x+x^2}+\frac {8 \log (-1+x)}{(-4+x)^2}\right ) \, dx\\ &=-\left (8 \int \frac {1}{4-5 x+x^2} \, dx\right )+8 \int \frac {\log (-1+x)}{(-4+x)^2} \, dx\\ &=\frac {8 \log (-1+x)}{4-x}-\frac {8}{3} \int \frac {1}{-4+x} \, dx+\frac {8}{3} \int \frac {1}{-1+x} \, dx+8 \int \frac {1}{(-4+x) (-1+x)} \, dx\\ &=\frac {8}{3} \log (1-x)-\frac {8}{3} \log (4-x)+\frac {8 \log (-1+x)}{4-x}+\frac {8}{3} \int \frac {1}{-4+x} \, dx-\frac {8}{3} \int \frac {1}{-1+x} \, dx\\ &=\frac {8 \log (-1+x)}{4-x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [B]  time = 0.04, size = 42, normalized size = 3.23 \begin {gather*} \frac {8}{3} \left (2 \tanh ^{-1}\left (\frac {5}{3}-\frac {2 x}{3}\right )+\log (1-x)-\log (4-x)-\frac {3 \log (-1+x)}{-4+x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(32 - 8*x + (-8 + 8*x)*Log[-1 + x])/(-16 + 24*x - 9*x^2 + x^3),x]

[Out]

(8*(2*ArcTanh[5/3 - (2*x)/3] + Log[1 - x] - Log[4 - x] - (3*Log[-1 + x])/(-4 + x)))/3

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 11, normalized size = 0.85 \begin {gather*} -\frac {8 \, \log \left (x - 1\right )}{x - 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-8)*log(x-1)-8*x+32)/(x^3-9*x^2+24*x-16),x, algorithm="fricas")

[Out]

-8*log(x - 1)/(x - 4)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 11, normalized size = 0.85 \begin {gather*} -\frac {8 \, \log \left (x - 1\right )}{x - 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-8)*log(x-1)-8*x+32)/(x^3-9*x^2+24*x-16),x, algorithm="giac")

[Out]

-8*log(x - 1)/(x - 4)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 12, normalized size = 0.92




method result size



norman \(-\frac {8 \ln \left (x -1\right )}{x -4}\) \(12\)
risch \(-\frac {8 \ln \left (x -1\right )}{x -4}\) \(12\)
derivativedivides \(-\frac {8 \ln \left (x -1\right ) \left (x -1\right )}{3 \left (x -4\right )}+\frac {8 \ln \left (x -1\right )}{3}\) \(22\)
default \(-\frac {8 \ln \left (x -1\right ) \left (x -1\right )}{3 \left (x -4\right )}+\frac {8 \ln \left (x -1\right )}{3}\) \(22\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*x-8)*ln(x-1)-8*x+32)/(x^3-9*x^2+24*x-16),x,method=_RETURNVERBOSE)

[Out]

-8*ln(x-1)/(x-4)

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 33, normalized size = 2.54 \begin {gather*} -\frac {8 \, {\left ({\left (4 \, x - 7\right )} \log \left (x - 1\right ) - 12\right )}}{9 \, {\left (x - 4\right )}} - \frac {32}{3 \, {\left (x - 4\right )}} + \frac {32}{9} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-8)*log(x-1)-8*x+32)/(x^3-9*x^2+24*x-16),x, algorithm="maxima")

[Out]

-8/9*((4*x - 7)*log(x - 1) - 12)/(x - 4) - 32/3/(x - 4) + 32/9*log(x - 1)

________________________________________________________________________________________

mupad [B]  time = 7.69, size = 11, normalized size = 0.85 \begin {gather*} -\frac {8\,\ln \left (x-1\right )}{x-4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x - 1)*(8*x - 8) - 8*x + 32)/(24*x - 9*x^2 + x^3 - 16),x)

[Out]

-(8*log(x - 1))/(x - 4)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 10, normalized size = 0.77 \begin {gather*} - \frac {8 \log {\left (x - 1 \right )}}{x - 4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x-8)*ln(x-1)-8*x+32)/(x**3-9*x**2+24*x-16),x)

[Out]

-8*log(x - 1)/(x - 4)

________________________________________________________________________________________