Optimal. Leaf size=23 \[ \frac {x^2}{e \sqrt [3]{4-x+\log \left (\frac {5}{\log (x)}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 1.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+\left (24 x-5 x^2\right ) \log (x)+6 x \log (x) \log \left (\frac {5}{\log (x)}\right )}{\sqrt [3]{4-x+\log \left (\frac {5}{\log (x)}\right )} \left (e (12-3 x) \log (x)+3 e \log (x) \log \left (\frac {5}{\log (x)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (1-\log (x) \left (-24+5 x-6 \log \left (\frac {5}{\log (x)}\right )\right )\right )}{3 e \log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx\\ &=\frac {\int \frac {x \left (1-\log (x) \left (-24+5 x-6 \log \left (\frac {5}{\log (x)}\right )\right )\right )}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}\\ &=\frac {\int \left (-\frac {x (-1-24 \log (x)+5 x \log (x))}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}}+\frac {6 x \log \left (\frac {5}{\log (x)}\right )}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}}\right ) \, dx}{3 e}\\ &=-\frac {\int \frac {x (-1-24 \log (x)+5 x \log (x))}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}+\frac {2 \int \frac {x \log \left (\frac {5}{\log (x)}\right )}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{e}\\ &=-\frac {\int \left (\frac {x (-24+5 x)}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}}-\frac {x}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}}\right ) \, dx}{3 e}+\frac {2 \int \frac {x \log \left (\frac {5}{\log (x)}\right )}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{e}\\ &=-\frac {\int \frac {x (-24+5 x)}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}+\frac {\int \frac {x}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}+\frac {2 \int \frac {x \log \left (\frac {5}{\log (x)}\right )}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{e}\\ &=\frac {\int \frac {x}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}-\frac {\int \left (-\frac {24 x}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}}+\frac {5 x^2}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}}\right ) \, dx}{3 e}+\frac {2 \int \frac {x \log \left (\frac {5}{\log (x)}\right )}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{e}\\ &=\frac {\int \frac {x}{\log (x) \left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}-\frac {5 \int \frac {x^2}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{3 e}+\frac {2 \int \frac {x \log \left (\frac {5}{\log (x)}\right )}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{e}+\frac {8 \int \frac {x}{\left (4-x+\log \left (\frac {5}{\log (x)}\right )\right )^{4/3}} \, dx}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 23, normalized size = 1.00 \begin {gather*} \frac {x^2}{e \sqrt [3]{4-x+\log \left (\frac {5}{\log (x)}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 39, normalized size = 1.70 \begin {gather*} -\frac {x^{2} {\left (-x + \log \left (\frac {5}{\log \relax (x)}\right ) + 4\right )}^{\frac {2}{3}}}{{\left (x - 4\right )} e - e \log \left (\frac {5}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {6 \, x \log \relax (x) \log \left (\frac {5}{\log \relax (x)}\right ) - {\left (5 \, x^{2} - 24 \, x\right )} \log \relax (x) + x}{3 \, {\left ({\left (x - 4\right )} e \log \relax (x) - e \log \relax (x) \log \left (\frac {5}{\log \relax (x)}\right )\right )} {\left (-x + \log \left (\frac {5}{\log \relax (x)}\right ) + 4\right )}^{\frac {1}{3}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {6 x \ln \relax (x ) \ln \left (\frac {5}{\ln \relax (x )}\right )+\left (-5 x^{2}+24 x \right ) \ln \relax (x )+x}{\left (3 \,{\mathrm e} \ln \relax (x ) \ln \left (\frac {5}{\ln \relax (x )}\right )+\left (-3 x +12\right ) {\mathrm e} \ln \relax (x )\right ) \left (\ln \left (\frac {5}{\ln \relax (x )}\right )-x +4\right )^{\frac {1}{3}}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{3} \, \int \frac {6 \, x \log \relax (x) \log \left (\frac {5}{\log \relax (x)}\right ) - {\left (5 \, x^{2} - 24 \, x\right )} \log \relax (x) + x}{{\left ({\left (x - 4\right )} e \log \relax (x) - e \log \relax (x) \log \left (\frac {5}{\log \relax (x)}\right )\right )} {\left (-x + \log \left (\frac {5}{\log \relax (x)}\right ) + 4\right )}^{\frac {1}{3}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.78, size = 20, normalized size = 0.87 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{-1}}{{\left (\ln \left (\frac {5}{\ln \relax (x)}\right )-x+4\right )}^{1/3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________