Optimal. Leaf size=27 \[ \frac {e^x \left (2+4 e^x \left (5+\frac {2 \log (\log (x))}{x}\right )\right )}{30 x} \]
________________________________________________________________________________________
Rubi [A] time = 1.08, antiderivative size = 43, normalized size of antiderivative = 1.59, number of steps used = 6, number of rules used = 5, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 6688, 6742, 2197, 2288} \begin {gather*} \frac {2 e^{2 x} \left (5 x^2 \log (x)+2 x \log (x) \log (\log (x))\right )}{15 x^3 \log (x)}+\frac {e^x}{15 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2197
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{15} \int \frac {4 e^{2 x}+\left (e^x \left (-x+x^2\right )+e^{2 x} \left (-10 x+20 x^2\right )\right ) \log (x)+e^{2 x} (-8+8 x) \log (x) \log (\log (x))}{x^3 \log (x)} \, dx\\ &=\frac {1}{15} \int \frac {e^x \left (4 e^x+\log (x) \left (x \left (-1+x+10 e^x (-1+2 x)\right )+8 e^x (-1+x) \log (\log (x))\right )\right )}{x^3 \log (x)} \, dx\\ &=\frac {1}{15} \int \left (\frac {e^x (-1+x)}{x^2}+\frac {2 e^{2 x} \left (2-5 x \log (x)+10 x^2 \log (x)-4 \log (x) \log (\log (x))+4 x \log (x) \log (\log (x))\right )}{x^3 \log (x)}\right ) \, dx\\ &=\frac {1}{15} \int \frac {e^x (-1+x)}{x^2} \, dx+\frac {2}{15} \int \frac {e^{2 x} \left (2-5 x \log (x)+10 x^2 \log (x)-4 \log (x) \log (\log (x))+4 x \log (x) \log (\log (x))\right )}{x^3 \log (x)} \, dx\\ &=\frac {e^x}{15 x}+\frac {2 e^{2 x} \left (5 x^2 \log (x)+2 x \log (x) \log (\log (x))\right )}{15 x^3 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 26, normalized size = 0.96 \begin {gather*} \frac {e^x \left (x+10 e^x x+4 e^x \log (\log (x))\right )}{15 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 26, normalized size = 0.96 \begin {gather*} \frac {10 \, x e^{\left (2 \, x\right )} + x e^{x} + 4 \, e^{\left (2 \, x\right )} \log \left (\log \relax (x)\right )}{15 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 35, normalized size = 1.30 \begin {gather*} \frac {4 \, x e^{\left (2 \, x\right )} \log \relax (x) + 10 \, x e^{\left (2 \, x\right )} + x e^{x} + 4 \, e^{\left (2 \, x\right )} \log \left (\log \relax (x)\right )}{15 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.00
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{2 x} \ln \left (\ln \relax (x )\right )}{15 x^{2}}+\frac {{\mathrm e}^{x} \left (10 \,{\mathrm e}^{x}+1\right )}{15 x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 37, normalized size = 1.37 \begin {gather*} \frac {4 \, e^{\left (2 \, x\right )} \log \left (\log \relax (x)\right )}{15 \, x^{2}} + \frac {4}{3} \, {\rm Ei}\left (2 \, x\right ) + \frac {1}{15} \, {\rm Ei}\relax (x) - \frac {1}{15} \, \Gamma \left (-1, -x\right ) - \frac {4}{3} \, \Gamma \left (-1, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\frac {4\,{\mathrm {e}}^{2\,x}}{15}-\frac {\ln \relax (x)\,\left ({\mathrm {e}}^{2\,x}\,\left (10\,x-20\,x^2\right )+{\mathrm {e}}^x\,\left (x-x^2\right )\right )}{15}+\frac {\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)\,\left (8\,x-8\right )}{15}}{x^3\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 31, normalized size = 1.15 \begin {gather*} \frac {15 x^{2} e^{x} + \left (150 x^{2} + 60 x \log {\left (\log {\relax (x )} \right )}\right ) e^{2 x}}{225 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________