Optimal. Leaf size=21 \[ \frac {(-1+x) x \left (-9+x+\frac {x^2}{7}\right )}{\log (9 x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.39, antiderivative size = 47, normalized size of antiderivative = 2.24, number of steps used = 25, number of rules used = 8, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.178, Rules used = {12, 6742, 2356, 2297, 2298, 2306, 2309, 2178} \begin {gather*} \frac {x^4}{7 \log (9 x)}+\frac {6 x^3}{7 \log (9 x)}-\frac {10 x^2}{\log (9 x)}+\frac {9 x}{\log (9 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2297
Rule 2298
Rule 2306
Rule 2309
Rule 2356
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{7} \int \frac {-63+70 x-6 x^2-x^3+\left (63-140 x+18 x^2+4 x^3\right ) \log (9 x)}{\log ^2(9 x)} \, dx\\ &=\frac {1}{7} \int \left (\frac {-63+70 x-6 x^2-x^3}{\log ^2(9 x)}+\frac {63-140 x+18 x^2+4 x^3}{\log (9 x)}\right ) \, dx\\ &=\frac {1}{7} \int \frac {-63+70 x-6 x^2-x^3}{\log ^2(9 x)} \, dx+\frac {1}{7} \int \frac {63-140 x+18 x^2+4 x^3}{\log (9 x)} \, dx\\ &=\frac {1}{7} \int \left (-\frac {63}{\log ^2(9 x)}+\frac {70 x}{\log ^2(9 x)}-\frac {6 x^2}{\log ^2(9 x)}-\frac {x^3}{\log ^2(9 x)}\right ) \, dx+\frac {1}{7} \int \left (\frac {63}{\log (9 x)}-\frac {140 x}{\log (9 x)}+\frac {18 x^2}{\log (9 x)}+\frac {4 x^3}{\log (9 x)}\right ) \, dx\\ &=-\left (\frac {1}{7} \int \frac {x^3}{\log ^2(9 x)} \, dx\right )+\frac {4}{7} \int \frac {x^3}{\log (9 x)} \, dx-\frac {6}{7} \int \frac {x^2}{\log ^2(9 x)} \, dx+\frac {18}{7} \int \frac {x^2}{\log (9 x)} \, dx-9 \int \frac {1}{\log ^2(9 x)} \, dx+9 \int \frac {1}{\log (9 x)} \, dx+10 \int \frac {x}{\log ^2(9 x)} \, dx-20 \int \frac {x}{\log (9 x)} \, dx\\ &=\frac {9 x}{\log (9 x)}-\frac {10 x^2}{\log (9 x)}+\frac {6 x^3}{7 \log (9 x)}+\frac {x^4}{7 \log (9 x)}+\text {li}(9 x)+\frac {4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (9 x)\right )}{45927}+\frac {2}{567} \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (9 x)\right )-\frac {20}{81} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (9 x)\right )-\frac {4}{7} \int \frac {x^3}{\log (9 x)} \, dx-\frac {18}{7} \int \frac {x^2}{\log (9 x)} \, dx-9 \int \frac {1}{\log (9 x)} \, dx+20 \int \frac {x}{\log (9 x)} \, dx\\ &=-\frac {20}{81} \text {Ei}(2 \log (9 x))+\frac {2}{567} \text {Ei}(3 \log (9 x))+\frac {4 \text {Ei}(4 \log (9 x))}{45927}+\frac {9 x}{\log (9 x)}-\frac {10 x^2}{\log (9 x)}+\frac {6 x^3}{7 \log (9 x)}+\frac {x^4}{7 \log (9 x)}-\frac {4 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (9 x)\right )}{45927}-\frac {2}{567} \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (9 x)\right )+\frac {20}{81} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (9 x)\right )\\ &=\frac {9 x}{\log (9 x)}-\frac {10 x^2}{\log (9 x)}+\frac {6 x^3}{7 \log (9 x)}+\frac {x^4}{7 \log (9 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 1.14 \begin {gather*} \frac {x \left (63-70 x+6 x^2+x^3\right )}{7 \log (9 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 25, normalized size = 1.19 \begin {gather*} \frac {x^{4} + 6 \, x^{3} - 70 \, x^{2} + 63 \, x}{7 \, \log \left (9 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 43, normalized size = 2.05 \begin {gather*} \frac {x^{4}}{7 \, \log \left (9 \, x\right )} + \frac {6 \, x^{3}}{7 \, \log \left (9 \, x\right )} - \frac {10 \, x^{2}}{\log \left (9 \, x\right )} + \frac {9 \, x}{\log \left (9 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.10
method | result | size |
risch | \(\frac {x \left (x^{3}+6 x^{2}-70 x +63\right )}{7 \ln \left (9 x \right )}\) | \(23\) |
norman | \(\frac {9 x -10 x^{2}+\frac {6}{7} x^{3}+\frac {1}{7} x^{4}}{\ln \left (9 x \right )}\) | \(27\) |
derivativedivides | \(\frac {x^{4}}{7 \ln \left (9 x \right )}+\frac {6 x^{3}}{7 \ln \left (9 x \right )}-\frac {10 x^{2}}{\ln \left (9 x \right )}+\frac {9 x}{\ln \left (9 x \right )}\) | \(44\) |
default | \(\frac {x^{4}}{7 \ln \left (9 x \right )}+\frac {6 x^{3}}{7 \ln \left (9 x \right )}-\frac {10 x^{2}}{\ln \left (9 x \right )}+\frac {9 x}{\ln \left (9 x \right )}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 73, normalized size = 3.48 \begin {gather*} \frac {4}{45927} \, {\rm Ei}\left (4 \, \log \left (9 \, x\right )\right ) + \frac {2}{567} \, {\rm Ei}\left (3 \, \log \left (9 \, x\right )\right ) - \frac {20}{81} \, {\rm Ei}\left (2 \, \log \left (9 \, x\right )\right ) + {\rm Ei}\left (\log \left (9 \, x\right )\right ) - \Gamma \left (-1, -\log \left (9 \, x\right )\right ) + \frac {20}{81} \, \Gamma \left (-1, -2 \, \log \left (9 \, x\right )\right ) - \frac {2}{567} \, \Gamma \left (-1, -3 \, \log \left (9 \, x\right )\right ) - \frac {4}{45927} \, \Gamma \left (-1, -4 \, \log \left (9 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 22, normalized size = 1.05 \begin {gather*} \frac {x\,\left (x^3+6\,x^2-70\,x+63\right )}{7\,\ln \left (9\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 22, normalized size = 1.05 \begin {gather*} \frac {x^{4} + 6 x^{3} - 70 x^{2} + 63 x}{7 \log {\left (9 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________