Optimal. Leaf size=39 \[ -e^5+e^{e^{4 (4+x)}}+\frac {x (3-x+\log (4))}{i \pi +\log (5-\log (3))} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 51, normalized size of antiderivative = 1.31, number of steps used = 4, number of rules used = 3, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {12, 2282, 2194} \begin {gather*} -\frac {x^2}{\log (5-\log (3))+i \pi }+e^{e^{4 x+16}}+\frac {x (3+\log (4))}{\log (5-\log (3))+i \pi } \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (3-2 x+\log (4)+4 e^{16+e^{16+4 x}+4 x} (i \pi +\log (5-\log (3)))\right ) \, dx}{i \pi +\log (5-\log (3))}\\ &=-\frac {x^2}{i \pi +\log (5-\log (3))}+\frac {x (3+\log (4))}{i \pi +\log (5-\log (3))}+4 \int e^{16+e^{16+4 x}+4 x} \, dx\\ &=-\frac {x^2}{i \pi +\log (5-\log (3))}+\frac {x (3+\log (4))}{i \pi +\log (5-\log (3))}+\operatorname {Subst}\left (\int e^{16+e^{16} x} \, dx,x,e^{4 x}\right )\\ &=e^{e^{16+4 x}}-\frac {x^2}{i \pi +\log (5-\log (3))}+\frac {x (3+\log (4))}{i \pi +\log (5-\log (3))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 52, normalized size = 1.33 \begin {gather*} \frac {3 x-x^2+x \log (4)+e^{e^{4 (4+x)}} (i \pi +\log (5-\log (3)))}{i \pi +\log (5-\log (3))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 54, normalized size = 1.38 \begin {gather*} -\frac {{\left ({\left (x^{2} - 2 \, x \log \relax (2) - 3 \, x\right )} e^{\left (4 \, x + 16\right )} - e^{\left (4 \, x + e^{\left (4 \, x + 16\right )} + 16\right )} \log \left (\log \relax (3) - 5\right )\right )} e^{\left (-4 \, x - 16\right )}}{\log \left (\log \relax (3) - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 35, normalized size = 0.90 \begin {gather*} -\frac {x^{2} - 2 \, x \log \relax (2) - e^{\left (e^{\left (4 \, x + 16\right )}\right )} \log \left (\log \relax (3) - 5\right ) - 3 \, x}{\log \left (\log \relax (3) - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 36, normalized size = 0.92
method | result | size |
default | \(\frac {-x^{2}+3 x +\ln \left (\ln \relax (3)-5\right ) {\mathrm e}^{{\mathrm e}^{4 x +16}}+2 x \ln \relax (2)}{\ln \left (\ln \relax (3)-5\right )}\) | \(36\) |
norman | \(\frac {\left (2 \ln \relax (2)+3\right ) x}{\ln \left (\ln \relax (3)-5\right )}-\frac {x^{2}}{\ln \left (\ln \relax (3)-5\right )}+{\mathrm e}^{{\mathrm e}^{4 x +16}}\) | \(36\) |
risch | \(-\frac {x^{2}}{\ln \left (\ln \relax (3)-5\right )}+\frac {3 x}{\ln \left (\ln \relax (3)-5\right )}+{\mathrm e}^{{\mathrm e}^{4 x +16}}+\frac {2 x \ln \relax (2)}{\ln \left (\ln \relax (3)-5\right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 35, normalized size = 0.90 \begin {gather*} -\frac {x^{2} - 2 \, x \log \relax (2) - e^{\left (e^{\left (4 \, x + 16\right )}\right )} \log \left (\log \relax (3) - 5\right ) - 3 \, x}{\log \left (\log \relax (3) - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 35, normalized size = 0.90 \begin {gather*} \frac {3\,x+x\,\ln \relax (4)-x^2+\ln \left (\ln \relax (3)-5\right )\,{\mathrm {e}}^{{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{16}}}{\ln \left (\ln \relax (3)-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 42, normalized size = 1.08 \begin {gather*} \frac {x^{2}}{- \log {\left (5 - \log {\relax (3 )} \right )} - i \pi } + \frac {x \left (2 \log {\relax (2 )} + 3\right )}{\log {\left (5 - \log {\relax (3 )} \right )} + i \pi } + e^{e^{16} e^{4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________