Optimal. Leaf size=35 \[ \left (-2+\frac {\left (\frac {1}{2} \left (\frac {1}{x}-x\right )-x\right ) \log (x)}{x+\log \left (1-e^3+x\right )}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 49.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^3+4 x^4-12 x^5-12 x^6+e^3 \left (-4 x^3+12 x^5\right )+\left (8 x^2+8 x^3-24 x^4-24 x^5+e^3 \left (-8 x^2+24 x^4\right )\right ) \log \left (1-e^3+x\right )+\left (4 x+4 x^2-12 x^3-12 x^4+e^3 \left (-4 x+12 x^3\right )\right ) \log ^2\left (1-e^3+x\right )+\log ^2(x) \left (3 x+2 x^2-12 x^3-6 x^4+9 x^5+e^3 \left (-2 x+6 x^3\right )+\left (1+x-9 x^4-9 x^5+e^3 \left (-1+9 x^4\right )\right ) \log \left (1-e^3+x\right )\right )+\log (x) \left (-x-x^2-6 x^3-2 x^4+3 x^5-9 x^6+e^3 \left (x+2 x^3+9 x^5\right )+\left (-1-x-10 x^2-6 x^3-9 x^4-21 x^5+e^3 \left (1+6 x^2+21 x^4\right )\right ) \log \left (1-e^3+x\right )+\left (-4 x-4 x^2-12 x^3-12 x^4+e^3 \left (4 x+12 x^3\right )\right ) \log ^2\left (1-e^3+x\right )\right )}{-2 x^6+2 e^3 x^6-2 x^7+\left (-6 x^5+6 e^3 x^5-6 x^6\right ) \log \left (1-e^3+x\right )+\left (-6 x^4+6 e^3 x^4-6 x^5\right ) \log ^2\left (1-e^3+x\right )+\left (-2 x^3+2 e^3 x^3-2 x^4\right ) \log ^3\left (1-e^3+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^3+4 x^4-12 x^5-12 x^6+e^3 \left (-4 x^3+12 x^5\right )+\left (8 x^2+8 x^3-24 x^4-24 x^5+e^3 \left (-8 x^2+24 x^4\right )\right ) \log \left (1-e^3+x\right )+\left (4 x+4 x^2-12 x^3-12 x^4+e^3 \left (-4 x+12 x^3\right )\right ) \log ^2\left (1-e^3+x\right )+\log ^2(x) \left (3 x+2 x^2-12 x^3-6 x^4+9 x^5+e^3 \left (-2 x+6 x^3\right )+\left (1+x-9 x^4-9 x^5+e^3 \left (-1+9 x^4\right )\right ) \log \left (1-e^3+x\right )\right )+\log (x) \left (-x-x^2-6 x^3-2 x^4+3 x^5-9 x^6+e^3 \left (x+2 x^3+9 x^5\right )+\left (-1-x-10 x^2-6 x^3-9 x^4-21 x^5+e^3 \left (1+6 x^2+21 x^4\right )\right ) \log \left (1-e^3+x\right )+\left (-4 x-4 x^2-12 x^3-12 x^4+e^3 \left (4 x+12 x^3\right )\right ) \log ^2\left (1-e^3+x\right )\right )}{\left (-2+2 e^3\right ) x^6-2 x^7+\left (-6 x^5+6 e^3 x^5-6 x^6\right ) \log \left (1-e^3+x\right )+\left (-6 x^4+6 e^3 x^4-6 x^5\right ) \log ^2\left (1-e^3+x\right )+\left (-2 x^3+2 e^3 x^3-2 x^4\right ) \log ^3\left (1-e^3+x\right )} \, dx\\ &=\int \frac {-4 \left (-1+e^3-x\right ) x \left (-1+3 x^2\right ) \left (x+\log \left (1-e^3+x\right )\right )^2+\left (-1+3 x^2\right ) \log ^2(x) \left (x \left (3-2 e^3+2 x-3 x^2\right )-\left (-1+e^3-x\right ) \left (1+3 x^2\right ) \log \left (1-e^3+x\right )\right )+\log (x) \left (x \left (1+x+6 x^2+2 x^3-3 x^4+9 x^5-e^3 \left (1+2 x^2+9 x^4\right )\right )+\left (1+x+10 x^2+6 x^3+9 x^4+21 x^5-e^3 \left (1+6 x^2+21 x^4\right )\right ) \log \left (1-e^3+x\right )-4 \left (-1+e^3-x\right ) x \left (1+3 x^2\right ) \log ^2\left (1-e^3+x\right )\right )}{2 x^3 \left (1-e^3+x\right ) \left (x+\log \left (1-e^3+x\right )\right )^3} \, dx\\ &=\frac {1}{2} \int \frac {-4 \left (-1+e^3-x\right ) x \left (-1+3 x^2\right ) \left (x+\log \left (1-e^3+x\right )\right )^2+\left (-1+3 x^2\right ) \log ^2(x) \left (x \left (3-2 e^3+2 x-3 x^2\right )-\left (-1+e^3-x\right ) \left (1+3 x^2\right ) \log \left (1-e^3+x\right )\right )+\log (x) \left (x \left (1+x+6 x^2+2 x^3-3 x^4+9 x^5-e^3 \left (1+2 x^2+9 x^4\right )\right )+\left (1+x+10 x^2+6 x^3+9 x^4+21 x^5-e^3 \left (1+6 x^2+21 x^4\right )\right ) \log \left (1-e^3+x\right )-4 \left (-1+e^3-x\right ) x \left (1+3 x^2\right ) \log ^2\left (1-e^3+x\right )\right )}{x^3 \left (1-e^3+x\right ) \left (x+\log \left (1-e^3+x\right )\right )^3} \, dx\\ &=\frac {1}{2} \int \left (-\frac {\left (-2+e^3-x\right ) \left (-1+3 x^2\right )^2 \log ^2(x)}{\left (-1+e^3-x\right ) x^2 \left (x+\log \left (1-e^3+x\right )\right )^3}+\frac {\left (1-3 x^2\right ) \log (x) \left (1-e^3+x+5 \left (1-\frac {e^3}{5}\right ) x^2+x^3-\left (1-e^3\right ) \log (x)-x \log (x)-3 \left (1-e^3\right ) x^2 \log (x)-3 x^3 \log (x)\right )}{x^3 \left (1-e^3+x\right ) \left (x+\log \left (1-e^3+x\right )\right )^2}+\frac {4 \left (-1+3 x^2+\log (x)+3 x^2 \log (x)\right )}{x^2 \left (x+\log \left (1-e^3+x\right )\right )}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {\left (-2+e^3-x\right ) \left (-1+3 x^2\right )^2 \log ^2(x)}{\left (-1+e^3-x\right ) x^2 \left (x+\log \left (1-e^3+x\right )\right )^3} \, dx\right )+\frac {1}{2} \int \frac {\left (1-3 x^2\right ) \log (x) \left (1-e^3+x+5 \left (1-\frac {e^3}{5}\right ) x^2+x^3-\left (1-e^3\right ) \log (x)-x \log (x)-3 \left (1-e^3\right ) x^2 \log (x)-3 x^3 \log (x)\right )}{x^3 \left (1-e^3+x\right ) \left (x+\log \left (1-e^3+x\right )\right )^2} \, dx+2 \int \frac {-1+3 x^2+\log (x)+3 x^2 \log (x)}{x^2 \left (x+\log \left (1-e^3+x\right )\right )} \, dx\\ &=\frac {1}{2} \int \frac {\left (1-3 x^2\right ) \log (x) \left (1+x+5 x^2+x^3-e^3 \left (1+x^2\right )+\left (-1+e^3-x\right ) \left (1+3 x^2\right ) \log (x)\right )}{x^3 \left (1-e^3+x\right ) \left (x+\log \left (1-e^3+x\right )\right )^2} \, dx-\frac {1}{2} \int \left (\frac {3 \left (-5+3 e^3\right ) \log ^2(x)}{\left (x+\log \left (1-e^3+x\right )\right )^3}-\frac {\left (2-6 e^3+3 e^6\right )^2 \log ^2(x)}{\left (-1+e^3\right )^2 \left (-1+e^3-x\right ) \left (x+\log \left (1-e^3+x\right )\right )^3}+\frac {\left (-2+e^3\right ) \log ^2(x)}{\left (-1+e^3\right ) x^2 \left (x+\log \left (1-e^3+x\right )\right )^3}-\frac {\log ^2(x)}{\left (-1+e^3\right )^2 x \left (x+\log \left (1-e^3+x\right )\right )^3}+\frac {9 x \log ^2(x)}{\left (x+\log \left (1-e^3+x\right )\right )^3}+\frac {9 x^2 \log ^2(x)}{\left (x+\log \left (1-e^3+x\right )\right )^3}\right ) \, dx+2 \int \left (\frac {3}{x+\log \left (1-e^3+x\right )}-\frac {1}{x^2 \left (x+\log \left (1-e^3+x\right )\right )}+\frac {3 \log (x)}{x+\log \left (1-e^3+x\right )}+\frac {\log (x)}{x^2 \left (x+\log \left (1-e^3+x\right )\right )}\right ) \, dx\\ &=\frac {1}{2} \int \left (\frac {\log (x) \left (1-e^3+x+5 \left (1-\frac {e^3}{5}\right ) x^2+x^3-\left (1-e^3\right ) \log (x)-x \log (x)-3 \left (1-e^3\right ) x^2 \log (x)-3 x^3 \log (x)\right )}{\left (1-e^3\right ) x^3 \left (x+\log \left (1-e^3+x\right )\right )^2}+\frac {\left (2-6 e^3+3 e^6\right ) \log (x) \left (1-e^3+x+5 \left (1-\frac {e^3}{5}\right ) x^2+x^3-\left (1-e^3\right ) \log (x)-x \log (x)-3 \left (1-e^3\right ) x^2 \log (x)-3 x^3 \log (x)\right )}{\left (1-e^3\right )^3 \left (1-e^3+x\right ) \left (x+\log \left (1-e^3+x\right )\right )^2}+\frac {\log (x) \left (-1+e^3-x-5 \left (1-\frac {e^3}{5}\right ) x^2-x^3+\left (1-e^3\right ) \log (x)+x \log (x)+3 \left (1-e^3\right ) x^2 \log (x)+3 x^3 \log (x)\right )}{\left (1-e^3\right )^2 x^2 \left (x+\log \left (1-e^3+x\right )\right )^2}+\frac {\left (2-6 e^3+3 e^6\right ) \log (x) \left (-1+e^3-x-5 \left (1-\frac {e^3}{5}\right ) x^2-x^3+\left (1-e^3\right ) \log (x)+x \log (x)+3 \left (1-e^3\right ) x^2 \log (x)+3 x^3 \log (x)\right )}{\left (1-e^3\right )^3 x \left (x+\log \left (1-e^3+x\right )\right )^2}\right ) \, dx-2 \int \frac {1}{x^2 \left (x+\log \left (1-e^3+x\right )\right )} \, dx+2 \int \frac {\log (x)}{x^2 \left (x+\log \left (1-e^3+x\right )\right )} \, dx-\frac {9}{2} \int \frac {x \log ^2(x)}{\left (x+\log \left (1-e^3+x\right )\right )^3} \, dx-\frac {9}{2} \int \frac {x^2 \log ^2(x)}{\left (x+\log \left (1-e^3+x\right )\right )^3} \, dx+6 \int \frac {1}{x+\log \left (1-e^3+x\right )} \, dx+6 \int \frac {\log (x)}{x+\log \left (1-e^3+x\right )} \, dx+\frac {1}{2} \left (3 \left (5-3 e^3\right )\right ) \int \frac {\log ^2(x)}{\left (x+\log \left (1-e^3+x\right )\right )^3} \, dx+\frac {\int \frac {\log ^2(x)}{x \left (x+\log \left (1-e^3+x\right )\right )^3} \, dx}{2 \left (1-e^3\right )^2}-\frac {\left (2-e^3\right ) \int \frac {\log ^2(x)}{x^2 \left (x+\log \left (1-e^3+x\right )\right )^3} \, dx}{2 \left (1-e^3\right )}+\frac {\left (2-6 e^3+3 e^6\right )^2 \int \frac {\log ^2(x)}{\left (-1+e^3-x\right ) \left (x+\log \left (1-e^3+x\right )\right )^3} \, dx}{2 \left (1-e^3\right )^2}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 54, normalized size = 1.54 \begin {gather*} \frac {\left (-1+3 x^2\right ) \log (x) \left (\left (-1+3 x^2\right ) \log (x)+8 x \left (x+\log \left (1-e^3+x\right )\right )\right )}{4 x^2 \left (x+\log \left (1-e^3+x\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.24, size = 86, normalized size = 2.46 \begin {gather*} \frac {{\left (9 \, x^{4} - 6 \, x^{2} + 1\right )} \log \relax (x)^{2} + 8 \, {\left (3 \, x^{4} - x^{2} + {\left (3 \, x^{3} - x\right )} \log \left (x - e^{3} + 1\right )\right )} \log \relax (x)}{4 \, {\left (x^{4} + 2 \, x^{3} \log \left (x - e^{3} + 1\right ) + x^{2} \log \left (x - e^{3} + 1\right )^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 71, normalized size = 2.03
method | result | size |
risch | \(\frac {\left (9 x^{4} \ln \relax (x )+24 x^{4}+24 x^{3} \ln \left (-{\mathrm e}^{3}+x +1\right )-6 x^{2} \ln \relax (x )-8 x^{2}-8 x \ln \left (-{\mathrm e}^{3}+x +1\right )+\ln \relax (x )\right ) \ln \relax (x )}{4 x^{2} \left (\ln \left (-{\mathrm e}^{3}+x +1\right )+x \right )^{2}}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 89, normalized size = 2.54 \begin {gather*} \frac {8 \, {\left (3 \, x^{3} - x\right )} \log \left (x - e^{3} + 1\right ) \log \relax (x) + {\left (9 \, x^{4} - 6 \, x^{2} + 1\right )} \log \relax (x)^{2} + 8 \, {\left (3 \, x^{4} - x^{2}\right )} \log \relax (x)}{4 \, {\left (x^{4} + 2 \, x^{3} \log \left (x - e^{3} + 1\right ) + x^{2} \log \left (x - e^{3} + 1\right )^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (x-{\mathrm {e}}^3+1\right )\,\left ({\mathrm {e}}^3\,\left (8\,x^2-24\,x^4\right )-8\,x^2-8\,x^3+24\,x^4+24\,x^5\right )+\ln \relax (x)\,\left (x-{\mathrm {e}}^3\,\left (9\,x^5+2\,x^3+x\right )+\ln \left (x-{\mathrm {e}}^3+1\right )\,\left (x-{\mathrm {e}}^3\,\left (21\,x^4+6\,x^2+1\right )+10\,x^2+6\,x^3+9\,x^4+21\,x^5+1\right )+{\ln \left (x-{\mathrm {e}}^3+1\right )}^2\,\left (4\,x-{\mathrm {e}}^3\,\left (12\,x^3+4\,x\right )+4\,x^2+12\,x^3+12\,x^4\right )+x^2+6\,x^3+2\,x^4-3\,x^5+9\,x^6\right )+{\mathrm {e}}^3\,\left (4\,x^3-12\,x^5\right )+{\ln \left (x-{\mathrm {e}}^3+1\right )}^2\,\left ({\mathrm {e}}^3\,\left (4\,x-12\,x^3\right )-4\,x-4\,x^2+12\,x^3+12\,x^4\right )-4\,x^3-4\,x^4+12\,x^5+12\,x^6-{\ln \relax (x)}^2\,\left (3\,x+\ln \left (x-{\mathrm {e}}^3+1\right )\,\left (x+{\mathrm {e}}^3\,\left (9\,x^4-1\right )-9\,x^4-9\,x^5+1\right )-{\mathrm {e}}^3\,\left (2\,x-6\,x^3\right )+2\,x^2-12\,x^3-6\,x^4+9\,x^5\right )}{{\ln \left (x-{\mathrm {e}}^3+1\right )}^3\,\left (2\,x^3-2\,x^3\,{\mathrm {e}}^3+2\,x^4\right )+{\ln \left (x-{\mathrm {e}}^3+1\right )}^2\,\left (6\,x^4-6\,x^4\,{\mathrm {e}}^3+6\,x^5\right )-2\,x^6\,{\mathrm {e}}^3+\ln \left (x-{\mathrm {e}}^3+1\right )\,\left (6\,x^5-6\,x^5\,{\mathrm {e}}^3+6\,x^6\right )+2\,x^6+2\,x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.63, size = 99, normalized size = 2.83 \begin {gather*} \frac {9 x^{4} \log {\relax (x )}^{2} + 24 x^{4} \log {\relax (x )} - 6 x^{2} \log {\relax (x )}^{2} - 8 x^{2} \log {\relax (x )} + \left (24 x^{3} \log {\relax (x )} - 8 x \log {\relax (x )}\right ) \log {\left (x - e^{3} + 1 \right )} + \log {\relax (x )}^{2}}{4 x^{4} + 8 x^{3} \log {\left (x - e^{3} + 1 \right )} + 4 x^{2} \log {\left (x - e^{3} + 1 \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________