Optimal. Leaf size=29 \[ \left (4+x-x^2\right ) \left (-4+\frac {2 x \log \left (\log \left (\frac {x}{e}+x^2\right )\right )}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (8+2 x-2 x^2+e \left (16 x+4 x^2-4 x^3\right )\right ) \log (x)+\left (-4+8 x+e \left (-4 x+8 x^2\right )\right ) \log ^2(x) \log \left (\frac {x+e x^2}{e}\right )+\left (-8-2 x+2 x^2+e \left (-8 x-2 x^2+2 x^3\right )+\left (8+4 x-6 x^2+e \left (8 x+4 x^2-6 x^3\right )\right ) \log (x)\right ) \log \left (\frac {x+e x^2}{e}\right ) \log \left (\log \left (\frac {x+e x^2}{e}\right )\right )}{(1+e x) \log ^2(x) \log \left (\frac {x+e x^2}{e}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+8 x+4 e x (-1+2 x)-\frac {2 (1+2 e x) \left (-4-x+x^2\right )}{\log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}-\frac {2 (1+e x) \left (4+x-x^2+\left (-4-2 x+3 x^2\right ) \log (x)\right ) \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)}}{1+e x} \, dx\\ &=\int \left (\frac {2 \left (4+(1+8 e) x-(1-2 e) x^2-2 e x^3-2 \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )+4 \left (1-\frac {e}{2}\right ) x \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )+4 e x^2 \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{(1+e x) \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}-\frac {2 \left (4+x-x^2-4 \log (x)-2 x \log (x)+3 x^2 \log (x)\right ) \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)}\right ) \, dx\\ &=2 \int \frac {4+(1+8 e) x-(1-2 e) x^2-2 e x^3-2 \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )+4 \left (1-\frac {e}{2}\right ) x \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )+4 e x^2 \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}{(1+e x) \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )} \, dx-2 \int \frac {\left (4+x-x^2-4 \log (x)-2 x \log (x)+3 x^2 \log (x)\right ) \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx\\ &=2 \int \left (-2+4 x-\frac {(1+2 e x) \left (-4-x+x^2\right )}{(1+e x) \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}\right ) \, dx-2 \int \left (\frac {4 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)}+\frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)}-\frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)}-\frac {4 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)}-\frac {2 x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)}+\frac {3 x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)}\right ) \, dx\\ &=-4 x+4 x^2-2 \int \frac {(1+2 e x) \left (-4-x+x^2\right )}{(1+e x) \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )} \, dx-2 \int \frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+2 \int \frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+4 \int \frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-6 \int \frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-8 \int \frac {\log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+8 \int \frac {\log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx\\ &=-4 x+4 x^2-2 \int \left (\frac {1+e-8 e^2}{e^2 \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}+\frac {2 x^2}{\log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}+\frac {-1-e+4 e^2}{e^2 (1+e x) \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )}+\frac {(1+2 e) x}{e \log (x) (1-\log (x (1+e x)))}\right ) \, dx-2 \int \frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+2 \int \frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+4 \int \frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-6 \int \frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-8 \int \frac {\log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+8 \int \frac {\log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx\\ &=-4 x+4 x^2-2 \int \frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+2 \int \frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx-4 \int \frac {x^2}{\log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )} \, dx+4 \int \frac {x \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-6 \int \frac {x^2 \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-8 \int \frac {\log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log ^2(x)} \, dx+8 \int \frac {\log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \, dx-\frac {(2 (1+2 e)) \int \frac {x}{\log (x) (1-\log (x (1+e x)))} \, dx}{e}-\frac {\left (2 \left (1+e-8 e^2\right )\right ) \int \frac {1}{\log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )} \, dx}{e^2}+\frac {\left (2 \left (1+e-4 e^2\right )\right ) \int \frac {1}{(1+e x) \log (x) \log \left (x \left (\frac {1}{e}+x\right )\right )} \, dx}{e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 33, normalized size = 1.14 \begin {gather*} -4 x+4 x^2-\frac {2 x \left (-4-x+x^2\right ) \log \left (\log \left (x \left (\frac {1}{e}+x\right )\right )\right )}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 45, normalized size = 1.55 \begin {gather*} \frac {2 \, {\left (2 \, {\left (x^{2} - x\right )} \log \relax (x) - {\left (x^{3} - x^{2} - 4 \, x\right )} \log \left (\log \left ({\left (x^{2} e + x\right )} e^{\left (-1\right )}\right )\right )\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.56, size = 67, normalized size = 2.31 \begin {gather*} -\frac {2 \, {\left (x^{3} \log \left (\log \left (x^{2} e + x\right ) - 1\right ) - 2 \, x^{2} \log \relax (x) - x^{2} \log \left (\log \left (x^{2} e + x\right ) - 1\right ) + 2 \, x \log \relax (x) - 4 \, x \log \left (\log \left (x^{2} e + x\right ) - 1\right )\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.68, size = 95, normalized size = 3.28
method | result | size |
risch | \(-\frac {2 x \left (x^{2}-x -4\right ) \ln \left (-1+\ln \relax (x )+\ln \left (x \,{\mathrm e}+1\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x \,{\mathrm e}+1\right )\right ) \left (-\mathrm {csgn}\left (i x \left (x \,{\mathrm e}+1\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (x \,{\mathrm e}+1\right )\right )+\mathrm {csgn}\left (i \left (x \,{\mathrm e}+1\right )\right )\right )}{2}\right )}{\ln \relax (x )}+4 x^{2}-4 x\) | \(95\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.98, size = 44, normalized size = 1.52 \begin {gather*} \frac {2 \, {\left (2 \, {\left (x^{2} - x\right )} \log \relax (x) - {\left (x^{3} - x^{2} - 4 \, x\right )} \log \left (\log \left (x e + 1\right ) + \log \relax (x) - 1\right )\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.72, size = 55, normalized size = 1.90 \begin {gather*} 4\,x^2-4\,x+\frac {2\,x^2\,\ln \left (\ln \left ({\mathrm {e}}^{-1}\,\left (\mathrm {e}\,x^2+x\right )\right )\right )\,\left (x\,\mathrm {e}+1\right )\,\left (-x^2+x+4\right )}{\ln \relax (x)\,\left (\mathrm {e}\,x^2+x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.90, size = 39, normalized size = 1.34 \begin {gather*} 4 x^{2} - 4 x + \frac {\left (- 2 x^{3} + 2 x^{2} + 8 x\right ) \log {\left (\log {\left (\frac {e x^{2} + x}{e} \right )} \right )}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________