Optimal. Leaf size=28 \[ 3 \left (4-(2+2 x) \left (5-x^2\right )+e^{10 x^2} \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 4, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {14, 2288} \begin {gather*} 6 x^3+6 x^2+3 e^{10 x^2} \log (x)-30 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6 \left (-5+2 x+3 x^2\right )+\frac {3 e^{10 x^2} \left (1+20 x^2 \log (x)\right )}{x}\right ) \, dx\\ &=3 \int \frac {e^{10 x^2} \left (1+20 x^2 \log (x)\right )}{x} \, dx+6 \int \left (-5+2 x+3 x^2\right ) \, dx\\ &=-30 x+6 x^2+6 x^3+3 e^{10 x^2} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 26, normalized size = 0.93 \begin {gather*} 3 \left (-10 x+2 x^2+2 x^3+e^{10 x^2} \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 24, normalized size = 0.86 \begin {gather*} 6 \, x^{3} + 6 \, x^{2} + 3 \, e^{\left (10 \, x^{2}\right )} \log \relax (x) - 30 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.86 \begin {gather*} 6 \, x^{3} + 6 \, x^{2} + 3 \, e^{\left (10 \, x^{2}\right )} \log \relax (x) - 30 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 0.89
method | result | size |
risch | \(-30 x +3 \ln \relax (x ) {\mathrm e}^{10 x^{2}}+6 x^{2}+6 x^{3}\) | \(25\) |
default | \(-30 x +3 \ln \relax (x ) {\mathrm e}^{10 x^{2}}+6 x^{2}+6 x^{3}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.24, size = 24, normalized size = 0.86 \begin {gather*} 6 \, x^{3} + 6 \, x^{2} + 3 \, e^{\left (10 \, x^{2}\right )} \log \relax (x) - 30 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.11, size = 24, normalized size = 0.86 \begin {gather*} 6\,x^2-30\,x+6\,x^3+3\,{\mathrm {e}}^{10\,x^2}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 0.86 \begin {gather*} 6 x^{3} + 6 x^{2} - 30 x + 3 e^{10 x^{2}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________