Optimal. Leaf size=28 \[ x+\frac {\log \left (2+3 \left (x+x^2\right )\right )}{4-e^{4 x}-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 13.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {44 x+72 x^2+48 x^3+e^{4 x} \left (-19 x-30 x^2-24 x^3\right )+e^{8 x} \left (2 x+3 x^2+3 x^3\right )+\left (-19 x-30 x^2-24 x^3+e^{4 x} \left (4 x+6 x^2+6 x^3\right )\right ) \log (x)+\left (2 x+3 x^2+3 x^3\right ) \log ^2(x)+\left (2+3 x+3 x^2+e^{4 x} \left (8 x+12 x^2+12 x^3\right )\right ) \log \left (2+3 x+3 x^2\right )}{32 x+48 x^2+48 x^3+e^{4 x} \left (-16 x-24 x^2-24 x^3\right )+e^{8 x} \left (2 x+3 x^2+3 x^3\right )+\left (-16 x-24 x^2-24 x^3+e^{4 x} \left (4 x+6 x^2+6 x^3\right )\right ) \log (x)+\left (2 x+3 x^2+3 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-4+e^{4 x}\right ) x \left (-11-18 x-12 x^2+e^{4 x} \left (2+3 x+3 x^2\right )\right )+x \left (-19-30 x-24 x^2+e^{4 x} \left (4+6 x+6 x^2\right )\right ) \log (x)+x \left (2+3 x+3 x^2\right ) \log ^2(x)+\left (1+4 e^{4 x} x\right ) \left (2+3 x+3 x^2\right ) \log \left (2+3 x+3 x^2\right )}{x \left (2+3 x+3 x^2\right ) \left (4-e^{4 x}-\log (x)\right )^2} \, dx\\ &=\int \left (1-\frac {(-1-16 x+4 x \log (x)) \log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2}+\frac {-3-6 x+8 \log \left (2+3 x+3 x^2\right )+12 x \log \left (2+3 x+3 x^2\right )+12 x^2 \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx\\ &=x-\int \frac {(-1-16 x+4 x \log (x)) \log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx+\int \frac {-3-6 x+8 \log \left (2+3 x+3 x^2\right )+12 x \log \left (2+3 x+3 x^2\right )+12 x^2 \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx\\ &=x+\int \frac {3+6 x-4 \left (2+3 x+3 x^2\right ) \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (4-e^{4 x}-\log (x)\right )} \, dx-\int \left (-\frac {16 \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2}-\frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2}+\frac {4 \log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2}\right ) \, dx\\ &=x-4 \int \frac {\log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+16 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+\int \frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx+\int \left (-\frac {3}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}-\frac {6 x}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {8 \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {12 x \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {12 x^2 \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx\\ &=x-3 \int \frac {1}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-4 \int \frac {\log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx-6 \int \frac {x}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+8 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+12 \int \frac {x \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+12 \int \frac {x^2 \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+16 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+\int \frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx\\ &=x-3 \int \left (\frac {2 i \sqrt {\frac {3}{5}}}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {2 i \sqrt {\frac {3}{5}}}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx-4 \int \frac {\log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx-6 \int \left (\frac {1+i \sqrt {\frac {3}{5}}}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {1-i \sqrt {\frac {3}{5}}}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx+8 \int \left (\frac {2 i \sqrt {\frac {3}{5}} \log \left (2+3 x+3 x^2\right )}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {2 i \sqrt {\frac {3}{5}} \log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx+12 \int \left (\frac {\left (1+i \sqrt {\frac {3}{5}}\right ) \log \left (2+3 x+3 x^2\right )}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {\left (1-i \sqrt {\frac {3}{5}}\right ) \log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx+12 \int \left (\frac {\log \left (2+3 x+3 x^2\right )}{3 \left (-4+e^{4 x}+\log (x)\right )}-\frac {(2+3 x) \log \left (2+3 x+3 x^2\right )}{3 \left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx+16 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+\int \frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx\\ &=x-4 \int \frac {\log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+4 \int \frac {\log \left (2+3 x+3 x^2\right )}{-4+e^{4 x}+\log (x)} \, dx-4 \int \frac {(2+3 x) \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+16 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx-\left (6 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\left (6 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\left (16 i \sqrt {\frac {3}{5}}\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\left (16 i \sqrt {\frac {3}{5}}\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\frac {1}{5} \left (6 \left (5-i \sqrt {15}\right )\right ) \int \frac {1}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\frac {1}{5} \left (12 \left (5-i \sqrt {15}\right )\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\frac {1}{5} \left (6 \left (5+i \sqrt {15}\right )\right ) \int \frac {1}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\frac {1}{5} \left (12 \left (5+i \sqrt {15}\right )\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\int \frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx\\ &=x-4 \int \frac {\log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+4 \int \frac {\log \left (2+3 x+3 x^2\right )}{-4+e^{4 x}+\log (x)} \, dx-4 \int \left (\frac {2 \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}+\frac {3 x \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )}\right ) \, dx+16 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx-\left (6 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\left (6 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\left (16 i \sqrt {\frac {3}{5}}\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\left (16 i \sqrt {\frac {3}{5}}\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\frac {1}{5} \left (6 \left (5-i \sqrt {15}\right )\right ) \int \frac {1}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\frac {1}{5} \left (12 \left (5-i \sqrt {15}\right )\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\frac {1}{5} \left (6 \left (5+i \sqrt {15}\right )\right ) \int \frac {1}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\frac {1}{5} \left (12 \left (5+i \sqrt {15}\right )\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\int \frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx\\ &=x-4 \int \frac {\log (x) \log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx+4 \int \frac {\log \left (2+3 x+3 x^2\right )}{-4+e^{4 x}+\log (x)} \, dx-8 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-12 \int \frac {x \log \left (2+3 x+3 x^2\right )}{\left (2+3 x+3 x^2\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+16 \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-4+e^{4 x}+\log (x)\right )^2} \, dx-\left (6 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\left (6 i \sqrt {\frac {3}{5}}\right ) \int \frac {1}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\left (16 i \sqrt {\frac {3}{5}}\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (-3+i \sqrt {15}-6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\left (16 i \sqrt {\frac {3}{5}}\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\frac {1}{5} \left (6 \left (5-i \sqrt {15}\right )\right ) \int \frac {1}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\frac {1}{5} \left (12 \left (5-i \sqrt {15}\right )\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3+i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx-\frac {1}{5} \left (6 \left (5+i \sqrt {15}\right )\right ) \int \frac {1}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\frac {1}{5} \left (12 \left (5+i \sqrt {15}\right )\right ) \int \frac {\log \left (2+3 x+3 x^2\right )}{\left (3-i \sqrt {15}+6 x\right ) \left (-4+e^{4 x}+\log (x)\right )} \, dx+\int \frac {\log \left (2+3 x+3 x^2\right )}{x \left (-4+e^{4 x}+\log (x)\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 26, normalized size = 0.93 \begin {gather*} x-\frac {\log \left (2+3 x+3 x^2\right )}{-4+e^{4 x}+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 38, normalized size = 1.36 \begin {gather*} \frac {x e^{\left (4 \, x\right )} + x \log \relax (x) - 4 \, x - \log \left (3 \, x^{2} + 3 \, x + 2\right )}{e^{\left (4 \, x\right )} + \log \relax (x) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 38, normalized size = 1.36 \begin {gather*} \frac {x e^{\left (4 \, x\right )} + x \log \relax (x) - 4 \, x - \log \left (3 \, x^{2} + 3 \, x + 2\right )}{e^{\left (4 \, x\right )} + \log \relax (x) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 0.93
method | result | size |
risch | \(-\frac {\ln \left (3 x^{2}+3 x +2\right )}{{\mathrm e}^{4 x}+\ln \relax (x )-4}+x\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 38, normalized size = 1.36 \begin {gather*} \frac {x e^{\left (4 \, x\right )} + x \log \relax (x) - 4 \, x - \log \left (3 \, x^{2} + 3 \, x + 2\right )}{e^{\left (4 \, x\right )} + \log \relax (x) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.05, size = 25, normalized size = 0.89 \begin {gather*} x-\frac {\ln \left (3\,x^2+3\,x+2\right )}{{\mathrm {e}}^{4\,x}+\ln \relax (x)-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 22, normalized size = 0.79 \begin {gather*} x - \frac {\log {\left (3 x^{2} + 3 x + 2 \right )}}{e^{4 x} + \log {\relax (x )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________