Optimal. Leaf size=21 \[ \frac {\log \left (\frac {e^{-x}}{x^3}\right )}{2-e-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {6, 6688, 6742, 72, 2551} \begin {gather*} \frac {\log \left (\frac {e^{-x}}{x^3}\right )}{-x-e+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 72
Rule 2551
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6+x+x^2+e (3+x)+x \log \left (\frac {e^{-x}}{x^3}\right )}{\left (4+e^2\right ) x-4 x^2+x^3+e \left (-4 x+2 x^2\right )} \, dx\\ &=\int \frac {(3+x) (-2+e+x)+x \log \left (\frac {e^{-x}}{x^3}\right )}{(2-e-x)^2 x} \, dx\\ &=\int \left (\frac {3+x}{x (-2+e+x)}+\frac {\log \left (\frac {e^{-x}}{x^3}\right )}{(-2+e+x)^2}\right ) \, dx\\ &=\int \frac {3+x}{x (-2+e+x)} \, dx+\int \frac {\log \left (\frac {e^{-x}}{x^3}\right )}{(-2+e+x)^2} \, dx\\ &=\frac {\log \left (\frac {e^{-x}}{x^3}\right )}{2-e-x}+\int \frac {3+x}{(2-e-x) x} \, dx+\int \left (\frac {3}{(-2+e) x}+\frac {-5+e}{(-2+e) (-2+e+x)}\right ) \, dx\\ &=\frac {(5-e) \log (2-e-x)}{2-e}+\frac {\log \left (\frac {e^{-x}}{x^3}\right )}{2-e-x}-\frac {3 \log (x)}{2-e}+\int \left (-\frac {3}{(-2+e) x}+\frac {5-e}{(-2+e) (-2+e+x)}\right ) \, dx\\ &=\frac {\log \left (\frac {e^{-x}}{x^3}\right )}{2-e-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 18, normalized size = 0.86 \begin {gather*} -\frac {\log \left (\frac {e^{-x}}{x^3}\right )}{-2+e+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 18, normalized size = 0.86 \begin {gather*} -\frac {\log \left (\frac {e^{\left (-x\right )}}{x^{3}}\right )}{x + e - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 17, normalized size = 0.81 \begin {gather*} -\frac {e - 3 \, \log \relax (x) - 2}{x + e - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 19, normalized size = 0.90
method | result | size |
norman | \(-\frac {\ln \left (\frac {{\mathrm e}^{-x}}{x^{3}}\right )}{{\mathrm e}-2+x}\) | \(19\) |
risch | \(-\frac {\ln \left ({\mathrm e}^{-x}\right )}{{\mathrm e}-2+x}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x^{3}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x^{3}}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x^{3}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x^{3}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x^{3}}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-x}}{x^{3}}\right )^{3}+6 \ln \relax (x )}{2 \,{\mathrm e}-4+2 x}\) | \(249\) |
default | \(-\frac {{\mathrm e}}{{\mathrm e}-2+x}+\frac {2}{{\mathrm e}-2+x}-\frac {\ln \left (\frac {{\mathrm e}^{-x}}{x^{3}}\right )+x +3 \ln \relax (x )}{{\mathrm e}-2+x}-\ln \left ({\mathrm e}-2+x \right )+\frac {3 \ln \relax (x ) \left (-\ln \left (\frac {{\mathrm e}-2-\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}+x}{{\mathrm e}-2-\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}\right )+\ln \left (\frac {{\mathrm e}-2+\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}+x}{{\mathrm e}-2+\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}\right )\right )}{2 \sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}-\frac {3 \dilog \left (\frac {{\mathrm e}-2-\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}+x}{{\mathrm e}-2-\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}\right )}{2 \sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}+\frac {3 \dilog \left (\frac {{\mathrm e}-2+\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}+x}{{\mathrm e}-2+\sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}\right )}{2 \sqrt {\left ({\mathrm e}\right )^{2}-{\mathrm e}^{2}}}+\frac {3 \ln \relax (x )}{{\mathrm e}-2}-\frac {5 \ln \left ({\mathrm e}-2+x \right )}{{\mathrm e}-2}+\frac {\ln \left ({\mathrm e}-2+x \right ) {\mathrm e}}{{\mathrm e}-2}\) | \(285\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 189, normalized size = 9.00 \begin {gather*} -3 \, {\left (\frac {\log \left (x + e - 2\right )}{e^{2} - 4 \, e + 4} - \frac {\log \relax (x)}{e^{2} - 4 \, e + 4} - \frac {1}{x {\left (e - 2\right )} + e^{2} - 4 \, e + 4}\right )} e - \frac {{\left (e - 5\right )} \log \left (x + e - 2\right )}{e - 2} + \frac {e - 2}{x + e - 2} - \frac {e}{x + e - 2} + \frac {6 \, \log \left (x + e - 2\right )}{e^{2} - 4 \, e + 4} - \frac {6 \, \log \relax (x)}{e^{2} - 4 \, e + 4} - \frac {3 \, \log \relax (x)}{e - 2} - \frac {\log \left (\frac {e^{\left (-x\right )}}{x^{3}}\right )}{x + e - 2} - \frac {6}{x {\left (e - 2\right )} + e^{2} - 4 \, e + 4} - \frac {1}{x + e - 2} + \log \left (x + e - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.32, size = 16, normalized size = 0.76 \begin {gather*} \frac {x-\ln \left (\frac {1}{x^3}\right )}{x+\mathrm {e}-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 17, normalized size = 0.81 \begin {gather*} - \frac {\log {\left (\frac {e^{- x}}{x^{3}} \right )}}{x - 2 + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________