3.93.90 \(\int \frac {e^{\frac {3 e^{4 x}-47 x-21 x^2-3 x^3}{3 x^3}} (94 x+21 x^2+e^{4 x} (-9+12 x))}{3 x^4} \, dx\)

Optimal. Leaf size=27 \[ e^{\frac {\frac {1}{3}+\frac {e^{4 x}}{x}+x-(4+x)^2}{x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.41, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 2, number of rules used = 2, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {12, 6706} \begin {gather*} e^{\frac {-3 x^3-21 x^2-47 x+3 e^{4 x}}{3 x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((3*E^(4*x) - 47*x - 21*x^2 - 3*x^3)/(3*x^3))*(94*x + 21*x^2 + E^(4*x)*(-9 + 12*x)))/(3*x^4),x]

[Out]

E^((3*E^(4*x) - 47*x - 21*x^2 - 3*x^3)/(3*x^3))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{\frac {3 e^{4 x}-47 x-21 x^2-3 x^3}{3 x^3}} \left (94 x+21 x^2+e^{4 x} (-9+12 x)\right )}{x^4} \, dx\\ &=e^{\frac {3 e^{4 x}-47 x-21 x^2-3 x^3}{3 x^3}}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.34, size = 25, normalized size = 0.93 \begin {gather*} e^{-1+\frac {e^{4 x}}{x^3}-\frac {47}{3 x^2}-\frac {7}{x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((3*E^(4*x) - 47*x - 21*x^2 - 3*x^3)/(3*x^3))*(94*x + 21*x^2 + E^(4*x)*(-9 + 12*x)))/(3*x^4),x]

[Out]

E^(-1 + E^(4*x)/x^3 - 47/(3*x^2) - 7/x)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 26, normalized size = 0.96 \begin {gather*} e^{\left (-\frac {3 \, x^{3} + 21 \, x^{2} + 47 \, x - 3 \, e^{\left (4 \, x\right )}}{3 \, x^{3}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((12*x-9)*exp(2*x)^2+21*x^2+94*x)*exp(1/3*(3*exp(2*x)^2-3*x^3-21*x^2-47*x)/x^3)/x^4,x, algorithm
="fricas")

[Out]

e^(-1/3*(3*x^3 + 21*x^2 + 47*x - 3*e^(4*x))/x^3)

________________________________________________________________________________________

giac [A]  time = 0.27, size = 21, normalized size = 0.78 \begin {gather*} e^{\left (-\frac {7}{x} - \frac {47}{3 \, x^{2}} + \frac {e^{\left (4 \, x\right )}}{x^{3}} - 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((12*x-9)*exp(2*x)^2+21*x^2+94*x)*exp(1/3*(3*exp(2*x)^2-3*x^3-21*x^2-47*x)/x^3)/x^4,x, algorithm
="giac")

[Out]

e^(-7/x - 47/3/x^2 + e^(4*x)/x^3 - 1)

________________________________________________________________________________________

maple [A]  time = 0.20, size = 27, normalized size = 1.00




method result size



risch \({\mathrm e}^{-\frac {-3 \,{\mathrm e}^{4 x}+3 x^{3}+21 x^{2}+47 x}{3 x^{3}}}\) \(27\)
norman \({\mathrm e}^{\frac {3 \,{\mathrm e}^{4 x}-3 x^{3}-21 x^{2}-47 x}{3 x^{3}}}\) \(29\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*((12*x-9)*exp(2*x)^2+21*x^2+94*x)*exp(1/3*(3*exp(2*x)^2-3*x^3-21*x^2-47*x)/x^3)/x^4,x,method=_RETURNVE
RBOSE)

[Out]

exp(-1/3*(-3*exp(4*x)+3*x^3+21*x^2+47*x)/x^3)

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 21, normalized size = 0.78 \begin {gather*} e^{\left (-\frac {7}{x} - \frac {47}{3 \, x^{2}} + \frac {e^{\left (4 \, x\right )}}{x^{3}} - 1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((12*x-9)*exp(2*x)^2+21*x^2+94*x)*exp(1/3*(3*exp(2*x)^2-3*x^3-21*x^2-47*x)/x^3)/x^4,x, algorithm
="maxima")

[Out]

e^(-7/x - 47/3/x^2 + e^(4*x)/x^3 - 1)

________________________________________________________________________________________

mupad [B]  time = 6.75, size = 24, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{-1}\,{\mathrm {e}}^{-\frac {7}{x}}\,{\mathrm {e}}^{-\frac {47}{3\,x^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{4\,x}}{x^3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-((47*x)/3 - exp(4*x) + 7*x^2 + x^3)/x^3)*(94*x + exp(4*x)*(12*x - 9) + 21*x^2))/(3*x^4),x)

[Out]

exp(-1)*exp(-7/x)*exp(-47/(3*x^2))*exp(exp(4*x)/x^3)

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 22, normalized size = 0.81 \begin {gather*} e^{\frac {- x^{3} - 7 x^{2} - \frac {47 x}{3} + e^{4 x}}{x^{3}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((12*x-9)*exp(2*x)**2+21*x**2+94*x)*exp(1/3*(3*exp(2*x)**2-3*x**3-21*x**2-47*x)/x**3)/x**4,x)

[Out]

exp((-x**3 - 7*x**2 - 47*x/3 + exp(4*x))/x**3)

________________________________________________________________________________________