Optimal. Leaf size=22 \[ -6+e^x+5 \left (2+15 e^{-2 x}+e^x\right ) x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 27, normalized size of antiderivative = 1.23, number of steps used = 17, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {6688, 2196, 2176, 2194} \begin {gather*} 75 e^{-2 x} x^2+5 e^x x^2+10 x^2+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (20 x-150 e^{-2 x} (-1+x) x+e^x \left (1+10 x+5 x^2\right )\right ) \, dx\\ &=10 x^2-150 \int e^{-2 x} (-1+x) x \, dx+\int e^x \left (1+10 x+5 x^2\right ) \, dx\\ &=10 x^2-150 \int \left (-e^{-2 x} x+e^{-2 x} x^2\right ) \, dx+\int \left (e^x+10 e^x x+5 e^x x^2\right ) \, dx\\ &=10 x^2+5 \int e^x x^2 \, dx+10 \int e^x x \, dx+150 \int e^{-2 x} x \, dx-150 \int e^{-2 x} x^2 \, dx+\int e^x \, dx\\ &=e^x-75 e^{-2 x} x+10 e^x x+10 x^2+75 e^{-2 x} x^2+5 e^x x^2-10 \int e^x \, dx-10 \int e^x x \, dx+75 \int e^{-2 x} \, dx-150 \int e^{-2 x} x \, dx\\ &=-\frac {75}{2} e^{-2 x}-9 e^x+10 x^2+75 e^{-2 x} x^2+5 e^x x^2+10 \int e^x \, dx-75 \int e^{-2 x} \, dx\\ &=e^x+10 x^2+75 e^{-2 x} x^2+5 e^x x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 1.23 \begin {gather*} 10 x^2+75 e^{-2 x} x^2+e^x \left (1+5 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 32, normalized size = 1.45 \begin {gather*} {\left (10 \, x^{2} e^{\left (2 \, x\right )} + 75 \, x^{2} + {\left (5 \, x^{2} + 1\right )} e^{\left (3 \, x\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 1.09 \begin {gather*} 75 \, x^{2} e^{\left (-2 \, x\right )} + 5 \, x^{2} e^{x} + 10 \, x^{2} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.14
method | result | size |
default | \(10 x^{2}+75 x^{2} {\mathrm e}^{-2 x}+5 \,{\mathrm e}^{x} x^{2}+{\mathrm e}^{x}\) | \(25\) |
risch | \(10 x^{2}+\left (5 x^{2}+1\right ) {\mathrm e}^{x}+75 x^{2} {\mathrm e}^{-2 x}\) | \(26\) |
norman | \(\left ({\mathrm e}^{3 x}+75 x^{2}+5 x^{2} {\mathrm e}^{3 x}+10 \,{\mathrm e}^{2 x} x^{2}\right ) {\mathrm e}^{-2 x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 54, normalized size = 2.45 \begin {gather*} 10 \, x^{2} + \frac {75}{2} \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x\right )} - \frac {75}{2} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + 5 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} + 10 \, {\left (x - 1\right )} e^{x} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 25, normalized size = 1.14 \begin {gather*} 75\,x^2\,{\mathrm {e}}^{-2\,x}+{\mathrm {e}}^x\,\left (5\,x^2+1\right )+10\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.09 \begin {gather*} 10 x^{2} + 75 x^{2} e^{- 2 x} + \left (5 x^{2} + 1\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________