Optimal. Leaf size=24 \[ \log \left (x \left (-x+e \left (-\frac {1}{2 e}+\left (e^x+x\right )^2\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 34, normalized size of antiderivative = 1.42, number of steps used = 1, number of rules used = 1, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {6684} \begin {gather*} \log \left (-2 e x^3-4 e^{x+1} x^2+2 x^2-2 e^{2 x+1} x+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log \left (x-2 e^{1+2 x} x+2 x^2-4 e^{1+x} x^2-2 e x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 32, normalized size = 1.33 \begin {gather*} \log (x)+\log \left (1-2 e^{1+2 x}+2 x-4 e^{1+x} x-2 e x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 36, normalized size = 1.50 \begin {gather*} \log \left (2 \, x^{2} e^{2} - {\left (2 \, x + 1\right )} e + 4 \, x e^{\left (x + 2\right )} + 2 \, e^{\left (2 \, x + 2\right )}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 31, normalized size = 1.29 \begin {gather*} \log \left (2 \, x^{2} e + 4 \, x e^{\left (x + 1\right )} - 2 \, x + 2 \, e^{\left (2 \, x + 1\right )} - 1\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 31, normalized size = 1.29
method | result | size |
risch | \(\ln \relax (x )+\ln \left ({\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x +\frac {\left (2 x^{2} {\mathrm e}-2 x -1\right ) {\mathrm e}^{-1}}{2}\right )\) | \(31\) |
norman | \(\ln \relax (x )+\ln \left (2 \,{\mathrm e} \,{\mathrm e}^{2 x}+4 x \,{\mathrm e} \,{\mathrm e}^{x}+2 x^{2} {\mathrm e}-2 x -1\right )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 35, normalized size = 1.46 \begin {gather*} \log \left (\frac {1}{2} \, {\left (2 \, x^{2} e + 4 \, x e^{\left (x + 1\right )} - 2 \, x + 2 \, e^{\left (2 \, x + 1\right )} - 1\right )} e^{\left (-1\right )}\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.89, size = 26, normalized size = 1.08 \begin {gather*} \ln \left ({\mathrm {e}}^{2\,x}-\frac {{\mathrm {e}}^{-1}}{2}-x\,{\mathrm {e}}^{-1}+2\,x\,{\mathrm {e}}^x+x^2\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 34, normalized size = 1.42 \begin {gather*} \log {\relax (x )} + \log {\left (2 x e^{x} + \frac {2 e x^{2} - 2 x - 1}{2 e} + e^{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________