Optimal. Leaf size=27 \[ \frac {1}{2} \left (6+e^5+(3+e) (x-\log (4+2 x+\log (2 x)))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 4, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {6688, 12, 6742, 6684} \begin {gather*} \frac {1}{2} (3+e) x-\frac {1}{2} (3+e) \log (2 x+\log (2 x)+4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(3+e) \left (-1+2 x+2 x^2+x \log (2 x)\right )}{2 x (4+2 x+\log (2 x))} \, dx\\ &=\frac {1}{2} (3+e) \int \frac {-1+2 x+2 x^2+x \log (2 x)}{x (4+2 x+\log (2 x))} \, dx\\ &=\frac {1}{2} (3+e) \int \left (1+\frac {-1-2 x}{x (4+2 x+\log (2 x))}\right ) \, dx\\ &=\frac {1}{2} (3+e) x+\frac {1}{2} (3+e) \int \frac {-1-2 x}{x (4+2 x+\log (2 x))} \, dx\\ &=\frac {1}{2} (3+e) x-\frac {1}{2} (3+e) \log (4+2 x+\log (2 x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 21, normalized size = 0.78 \begin {gather*} \frac {1}{2} (3+e) (x-\log (4+2 x+\log (2 x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 25, normalized size = 0.93 \begin {gather*} \frac {1}{2} \, x e - \frac {1}{2} \, {\left (e + 3\right )} \log \left (2 \, x + \log \left (2 \, x\right ) + 4\right ) + \frac {3}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 37, normalized size = 1.37 \begin {gather*} \frac {1}{2} \, x e - \frac {1}{2} \, e \log \left (2 \, x + \log \left (2 \, x\right ) + 4\right ) + \frac {3}{2} \, x - \frac {3}{2} \, \log \left (-2 \, x - \log \left (2 \, x\right ) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.00
method | result | size |
norman | \(\left (\frac {3}{2}+\frac {{\mathrm e}}{2}\right ) x +\left (-\frac {3}{2}-\frac {{\mathrm e}}{2}\right ) \ln \left (\ln \left (2 x \right )+2 x +4\right )\) | \(27\) |
risch | \(\frac {3 x}{2}+\frac {x \,{\mathrm e}}{2}-\frac {3 \ln \left (\ln \left (2 x \right )+2 x +4\right )}{2}-\frac {\ln \left (\ln \left (2 x \right )+2 x +4\right ) {\mathrm e}}{2}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 24, normalized size = 0.89 \begin {gather*} \frac {1}{2} \, x {\left (e + 3\right )} - \frac {1}{2} \, {\left (e + 3\right )} \log \left (2 \, x + \log \relax (2) + \log \relax (x) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.27, size = 21, normalized size = 0.78 \begin {gather*} \left (x-\ln \left (2\,x+\ln \left (2\,x\right )+4\right )\right )\,\left (\frac {\mathrm {e}}{2}+\frac {3}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 27, normalized size = 1.00 \begin {gather*} x \left (\frac {e}{2} + \frac {3}{2}\right ) - \frac {\left (e + 3\right ) \log {\left (2 x + \log {\left (2 x \right )} + 4 \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________