Optimal. Leaf size=28 \[ 25 \left (\frac {2}{x (10+x)}+3 \left (x-e^{-x} \log (4)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 2.07, antiderivative size = 77, normalized size of antiderivative = 2.75, number of steps used = 17, number of rules used = 7, integrand size = 130, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {6741, 6742, 1620, 2194, 2177, 2178, 2176} \begin {gather*} 225 x^2+\frac {1}{x^2}+\frac {1501}{5 (x+10)}+\frac {1}{(x+10)^2}-\frac {1}{5 x}+225 e^{-2 x} \log ^2(4)-450 e^{-x} x \log (4)+\frac {30 e^{-x} \log (4)}{x+10}-\frac {30 e^{-x} \log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1620
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 x} \left (e^{2 x} \left (-2000-400 x-3000 x^3+449700 x^4+135000 x^5+13500 x^6+450 x^7\right )+e^x \left (30000 x+39000 x^2-443400 x^3+315300 x^4+121500 x^5+13050 x^6+450 x^7\right ) \log (4)+\left (-450000 x^3-135000 x^4-13500 x^5-450 x^6\right ) \log ^2(4)\right )}{x^3 (10+x)^3} \, dx\\ &=\int \left (\frac {50 \left (2+30 x^2+3 x^3\right ) \left (-20-4 x+300 x^2+60 x^3+3 x^4\right )}{x^3 (10+x)^3}+\frac {150 e^{-x} \left (20+24 x-298 x^2+240 x^3+57 x^4+3 x^5\right ) \log (4)}{x^2 (10+x)^2}-450 e^{-2 x} \log ^2(4)\right ) \, dx\\ &=50 \int \frac {\left (2+30 x^2+3 x^3\right ) \left (-20-4 x+300 x^2+60 x^3+3 x^4\right )}{x^3 (10+x)^3} \, dx+(150 \log (4)) \int \frac {e^{-x} \left (20+24 x-298 x^2+240 x^3+57 x^4+3 x^5\right )}{x^2 (10+x)^2} \, dx-\left (450 \log ^2(4)\right ) \int e^{-2 x} \, dx\\ &=225 e^{-2 x} \log ^2(4)+50 \int \left (-\frac {1}{25 x^3}+\frac {1}{250 x^2}+9 x-\frac {1}{25 (10+x)^3}-\frac {1501}{250 (10+x)^2}\right ) \, dx+(150 \log (4)) \int \left (-3 e^{-x}+\frac {e^{-x}}{5 x^2}+\frac {e^{-x}}{5 x}+3 e^{-x} x-\frac {e^{-x}}{5 (10+x)^2}-\frac {e^{-x}}{5 (10+x)}\right ) \, dx\\ &=\frac {1}{x^2}-\frac {1}{5 x}+225 x^2+\frac {1}{(10+x)^2}+\frac {1501}{5 (10+x)}+225 e^{-2 x} \log ^2(4)+(30 \log (4)) \int \frac {e^{-x}}{x^2} \, dx+(30 \log (4)) \int \frac {e^{-x}}{x} \, dx-(30 \log (4)) \int \frac {e^{-x}}{(10+x)^2} \, dx-(30 \log (4)) \int \frac {e^{-x}}{10+x} \, dx-(450 \log (4)) \int e^{-x} \, dx+(450 \log (4)) \int e^{-x} x \, dx\\ &=\frac {1}{x^2}-\frac {1}{5 x}+225 x^2+\frac {1}{(10+x)^2}+\frac {1501}{5 (10+x)}+450 e^{-x} \log (4)-\frac {30 e^{-x} \log (4)}{x}-450 e^{-x} x \log (4)+\frac {30 e^{-x} \log (4)}{10+x}-30 e^{10} \text {Ei}(-10-x) \log (4)+30 \text {Ei}(-x) \log (4)+225 e^{-2 x} \log ^2(4)-(30 \log (4)) \int \frac {e^{-x}}{x} \, dx+(30 \log (4)) \int \frac {e^{-x}}{10+x} \, dx+(450 \log (4)) \int e^{-x} \, dx\\ &=\frac {1}{x^2}-\frac {1}{5 x}+225 x^2+\frac {1}{(10+x)^2}+\frac {1501}{5 (10+x)}-\frac {30 e^{-x} \log (4)}{x}-450 e^{-x} x \log (4)+\frac {30 e^{-x} \log (4)}{10+x}+225 e^{-2 x} \log ^2(4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 42, normalized size = 1.50 \begin {gather*} \frac {25 e^{-2 x} \left (e^x \left (2+30 x^2+3 x^3\right )-3 x (10+x) \log (4)\right )^2}{x^2 (10+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 106, normalized size = 3.79 \begin {gather*} -\frac {25 \, {\left (12 \, {\left (3 \, x^{5} + 60 \, x^{4} + 300 \, x^{3} + 2 \, x^{2} + 20 \, x\right )} e^{x} \log \relax (2) - 36 \, {\left (x^{4} + 20 \, x^{3} + 100 \, x^{2}\right )} \log \relax (2)^{2} - {\left (9 \, x^{6} + 180 \, x^{5} + 900 \, x^{4} + 12 \, x^{3} + 120 \, x^{2} + 4\right )} e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )}}{x^{4} + 20 \, x^{3} + 100 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 137, normalized size = 4.89 \begin {gather*} -\frac {25 \, {\left (36 \, x^{5} e^{\left (-x\right )} \log \relax (2) - 36 \, x^{4} e^{\left (-2 \, x\right )} \log \relax (2)^{2} - 9 \, x^{6} + 720 \, x^{4} e^{\left (-x\right )} \log \relax (2) - 720 \, x^{3} e^{\left (-2 \, x\right )} \log \relax (2)^{2} - 180 \, x^{5} + 3600 \, x^{3} e^{\left (-x\right )} \log \relax (2) - 3600 \, x^{2} e^{\left (-2 \, x\right )} \log \relax (2)^{2} - 900 \, x^{4} + 24 \, x^{2} e^{\left (-x\right )} \log \relax (2) - 12 \, x^{3} + 240 \, x e^{\left (-x\right )} \log \relax (2) - 120 \, x^{2} - 4\right )}}{x^{4} + 20 \, x^{3} + 100 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 71, normalized size = 2.54
method | result | size |
risch | \(225 x^{2}+\frac {300 x^{3}+3000 x^{2}+100}{x^{2} \left (x^{2}+20 x +100\right )}-\frac {300 \ln \relax (2) \left (3 x^{3}+30 x^{2}+2\right ) {\mathrm e}^{-x}}{x \left (x +10\right )}+900 \ln \relax (2)^{2} {\mathrm e}^{-2 x}\) | \(71\) |
default | \(\frac {1}{x^{2}}-\frac {1}{5 x}+\frac {1}{\left (x +10\right )^{2}}+\frac {1501}{5 \left (x +10\right )}+225 x^{2}+900 \ln \relax (2)^{2} {\mathrm e}^{-2 x}-\frac {600 \ln \relax (2) {\mathrm e}^{-x}}{x^{2}+20 x +100}-\frac {6000 \ln \relax (2) {\mathrm e}^{-x}}{x \left (x^{2}+20 x +100\right )}-900 \ln \relax (2) {\mathrm e}^{-x} x\) | \(85\) |
norman | \(\frac {\left (-2247000 \,{\mathrm e}^{2 x} x^{2}-449700 \,{\mathrm e}^{2 x} x^{3}+100 \,{\mathrm e}^{2 x}+90000 x^{2} \ln \relax (2)^{2}+18000 x^{3} \ln \relax (2)^{2}+900 x^{4} \ln \relax (2)^{2}+4500 x^{5} {\mathrm e}^{2 x}+225 x^{6} {\mathrm e}^{2 x}-6000 x \ln \relax (2) {\mathrm e}^{x}-600 x^{2} \ln \relax (2) {\mathrm e}^{x}-90000 x^{3} \ln \relax (2) {\mathrm e}^{x}-18000 \,{\mathrm e}^{x} \ln \relax (2) x^{4}-900 \,{\mathrm e}^{x} \ln \relax (2) x^{5}\right ) {\mathrm e}^{-2 x}}{x^{2} \left (x +10\right )^{2}}\) | \(127\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2700000 \, \int \frac {e^{\left (-2 \, x\right )}}{x^{4} + 40 \, x^{3} + 600 \, x^{2} + 4000 \, x + 10000}\,{d x} \log \relax (2)^{2} + \frac {1800000 \, e^{20} E_{3}\left (2 \, x + 20\right ) \log \relax (2)^{2}}{{\left (x + 10\right )}^{2}} + \frac {25 \, {\left (9 \, x^{7} + 270 \, x^{6} + 2700 \, x^{5} + 9012 \, x^{4} + 240 \, x^{3} + 1200 \, x^{2} - 12 \, {\left (3 \, x^{6} \log \relax (2) + 90 \, x^{5} \log \relax (2) + 900 \, x^{4} \log \relax (2) + 3002 \, x^{3} \log \relax (2) + 40 \, x^{2} \log \relax (2) + 200 \, x \log \relax (2)\right )} e^{\left (-x\right )} + 36 \, {\left (x^{5} \log \relax (2)^{2} + 30 \, x^{4} \log \relax (2)^{2} + 300 \, x^{3} \log \relax (2)^{2}\right )} e^{\left (-2 \, x\right )} + 4 \, x + 40\right )}}{x^{5} + 30 \, x^{4} + 300 \, x^{3} + 1000 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.07, size = 79, normalized size = 2.82 \begin {gather*} \frac {300\,x^3+3000\,x^2+100}{x^4+20\,x^3+100\,x^2}+900\,{\mathrm {e}}^{-2\,x}\,{\ln \relax (2)}^2+225\,x^2-\frac {{\mathrm {e}}^{-x}\,\left (900\,\ln \relax (2)\,x^3+9000\,\ln \relax (2)\,x^2+600\,\ln \relax (2)\right )}{x^2+10\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.34, size = 87, normalized size = 3.11 \begin {gather*} 225 x^{2} + \frac {300 x^{3} + 3000 x^{2} + 100}{x^{4} + 20 x^{3} + 100 x^{2}} + \frac {\left (900 x^{2} \log {\relax (2 )}^{2} + 9000 x \log {\relax (2 )}^{2}\right ) e^{- 2 x} + \left (- 900 x^{3} \log {\relax (2 )} - 9000 x^{2} \log {\relax (2 )} - 600 \log {\relax (2 )}\right ) e^{- x}}{x^{2} + 10 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________