Optimal. Leaf size=22 \[ \frac {-4+\frac {1+\frac {1}{e^3}}{x}}{3 \left (x+x^3\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 56, normalized size of antiderivative = 2.55, number of steps used = 6, number of rules used = 6, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 1594, 28, 1805, 1586, 37} \begin {gather*} \frac {\left (-2 e^3 x+e^3+1\right )^2}{3 e^3 \left (1+e^3\right ) x^2}-\frac {-4 e^3 x+e^3+1}{3 e^3 \left (x^2+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 28
Rule 37
Rule 1586
Rule 1594
Rule 1805
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-2-4 x^2+e^3 \left (-2+4 x-4 x^2+12 x^3\right )}{3 x^3+6 x^5+3 x^7} \, dx}{e^3}\\ &=\frac {\int \frac {-2-4 x^2+e^3 \left (-2+4 x-4 x^2+12 x^3\right )}{x^3 \left (3+6 x^2+3 x^4\right )} \, dx}{e^3}\\ &=\frac {3 \int \frac {-2-4 x^2+e^3 \left (-2+4 x-4 x^2+12 x^3\right )}{x^3 \left (3+3 x^2\right )^2} \, dx}{e^3}\\ &=-\frac {1+e^3-4 e^3 x}{3 e^3 \left (1+x^2\right )}-\frac {\int \frac {4 \left (1+e^3\right )-8 e^3 x+4 \left (1+e^3\right ) x^2-8 e^3 x^3}{x^3 \left (3+3 x^2\right )} \, dx}{2 e^3}\\ &=-\frac {1+e^3-4 e^3 x}{3 e^3 \left (1+x^2\right )}-\frac {\int \frac {\frac {4}{3}+\frac {4 e^3}{3}-\frac {8 e^3 x}{3}}{x^3} \, dx}{2 e^3}\\ &=\frac {\left (1+e^3-2 e^3 x\right )^2}{3 e^3 \left (1+e^3\right ) x^2}-\frac {1+e^3-4 e^3 x}{3 e^3 \left (1+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 1.23 \begin {gather*} \frac {1+e^3-4 e^3 x}{3 e^3 \left (x^2+x^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 23, normalized size = 1.05 \begin {gather*} -\frac {{\left ({\left (4 \, x - 1\right )} e^{3} - 1\right )} e^{\left (-3\right )}}{3 \, {\left (x^{4} + x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 40, normalized size = 1.82 \begin {gather*} \frac {1}{3} \, {\left (\frac {4 \, x e^{3} - e^{3} - 1}{x^{2} + 1} - \frac {4 \, x e^{3} - e^{3} - 1}{x^{2}}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 1.14
method | result | size |
risch | \(\frac {{\mathrm e}^{-3} \left (\frac {1}{3}-\frac {4 x \,{\mathrm e}^{3}}{3}+\frac {{\mathrm e}^{3}}{3}\right )}{x^{2} \left (x^{2}+1\right )}\) | \(25\) |
norman | \(\frac {-\frac {4 x}{3}+\frac {\left ({\mathrm e}^{3}+1\right ) {\mathrm e}^{-3}}{3}}{x^{2} \left (x^{2}+1\right )}\) | \(26\) |
gosper | \(-\frac {\left (4 x \,{\mathrm e}^{3}-{\mathrm e}^{3}-1\right ) {\mathrm e}^{-3}}{3 x^{2} \left (x^{2}+1\right )}\) | \(28\) |
default | \(\frac {{\mathrm e}^{-3} \left (-\frac {-{\mathrm e}^{3}-1}{x^{2}}-\frac {4 \,{\mathrm e}^{3}}{x}-\frac {2 \left (\frac {1}{2}-2 x \,{\mathrm e}^{3}+\frac {{\mathrm e}^{3}}{2}\right )}{x^{2}+1}\right )}{3}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 24, normalized size = 1.09 \begin {gather*} -\frac {{\left (4 \, x e^{3} - e^{3} - 1\right )} e^{\left (-3\right )}}{3 \, {\left (x^{4} + x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 27, normalized size = 1.23 \begin {gather*} \frac {{\mathrm {e}}^3-4\,x\,{\mathrm {e}}^3+1}{3\,{\mathrm {e}}^3\,x^4+3\,{\mathrm {e}}^3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.13, size = 27, normalized size = 1.23 \begin {gather*} \frac {- 4 x e^{3} + 1 + e^{3}}{3 x^{4} e^{3} + 3 x^{2} e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________