Optimal. Leaf size=24 \[ \left (-x^2+4 \log ^4(2)\right ) \log \left (3+e^3 x (3+x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.46, antiderivative size = 90, normalized size of antiderivative = 3.75, number of steps used = 16, number of rules used = 9, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {6688, 1628, 634, 618, 206, 628, 2525, 12, 800} \begin {gather*} \frac {\left (6-e^3 \left (9-8 \log ^4(2)\right )\right ) \log \left (e^3 x^2+3 e^3 x+3\right )}{2 e^3}+x^2 \left (-\log \left (e^3 x^2+3 e^3 x+3\right )\right )-\frac {3 \left (2-3 e^3\right ) \log \left (e^3 x^2+3 e^3 x+3\right )}{2 e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 206
Rule 618
Rule 628
Rule 634
Rule 800
Rule 1628
Rule 2525
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^3 (3+2 x) \left (x^2-4 \log ^4(2)\right )}{3+3 e^3 x+e^3 x^2}-2 x \log \left (3+3 e^3 x+e^3 x^2\right )\right ) \, dx\\ &=-\left (2 \int x \log \left (3+3 e^3 x+e^3 x^2\right ) \, dx\right )-e^3 \int \frac {(3+2 x) \left (x^2-4 \log ^4(2)\right )}{3+3 e^3 x+e^3 x^2} \, dx\\ &=-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )-e^3 \int \left (-\frac {3}{e^3}+\frac {2 x}{e^3}-\frac {-3 \left (3-4 e^3 \log ^4(2)\right )+x \left (6-e^3 \left (9-8 \log ^4(2)\right )\right )}{e^3 \left (3+3 e^3 x+e^3 x^2\right )}\right ) \, dx+\int \frac {e^3 x^2 (3+2 x)}{3+3 e^3 x+e^3 x^2} \, dx\\ &=3 x-x^2-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )+e^3 \int \frac {x^2 (3+2 x)}{3+3 e^3 x+e^3 x^2} \, dx+\int \frac {-3 \left (3-4 e^3 \log ^4(2)\right )+x \left (6-e^3 \left (9-8 \log ^4(2)\right )\right )}{3+3 e^3 x+e^3 x^2} \, dx\\ &=3 x-x^2-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )+e^3 \int \left (-\frac {3}{e^3}+\frac {2 x}{e^3}+\frac {3 \left (3-\left (2-3 e^3\right ) x\right )}{e^3 \left (3+3 e^3 x+e^3 x^2\right )}\right ) \, dx-\frac {1}{2} \left (9 \left (4-3 e^3\right )\right ) \int \frac {1}{3+3 e^3 x+e^3 x^2} \, dx+\frac {\left (6-e^3 \left (9-8 \log ^4(2)\right )\right ) \int \frac {3 e^3+2 e^3 x}{3+3 e^3 x+e^3 x^2} \, dx}{2 e^3}\\ &=-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )+\frac {\left (6-e^3 \left (9-8 \log ^4(2)\right )\right ) \log \left (3+3 e^3 x+e^3 x^2\right )}{2 e^3}+3 \int \frac {3-\left (2-3 e^3\right ) x}{3+3 e^3 x+e^3 x^2} \, dx+\left (9 \left (4-3 e^3\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-3 e^3 \left (4-3 e^3\right )-x^2} \, dx,x,3 e^3+2 e^3 x\right )\\ &=-\frac {3 \sqrt {3 \left (-4+3 e^3\right )} \tanh ^{-1}\left (\frac {e^{3/2} (3+2 x)}{\sqrt {3 \left (-4+3 e^3\right )}}\right )}{e^{3/2}}-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )+\frac {\left (6-e^3 \left (9-8 \log ^4(2)\right )\right ) \log \left (3+3 e^3 x+e^3 x^2\right )}{2 e^3}+\frac {1}{2} \left (9 \left (4-3 e^3\right )\right ) \int \frac {1}{3+3 e^3 x+e^3 x^2} \, dx+\frac {\left (3 \left (-2+3 e^3\right )\right ) \int \frac {3 e^3+2 e^3 x}{3+3 e^3 x+e^3 x^2} \, dx}{2 e^3}\\ &=-\frac {3 \sqrt {3 \left (-4+3 e^3\right )} \tanh ^{-1}\left (\frac {e^{3/2} (3+2 x)}{\sqrt {3 \left (-4+3 e^3\right )}}\right )}{e^{3/2}}-\frac {3 \left (2-3 e^3\right ) \log \left (3+3 e^3 x+e^3 x^2\right )}{2 e^3}-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )+\frac {\left (6-e^3 \left (9-8 \log ^4(2)\right )\right ) \log \left (3+3 e^3 x+e^3 x^2\right )}{2 e^3}-\left (9 \left (4-3 e^3\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-3 e^3 \left (4-3 e^3\right )-x^2} \, dx,x,3 e^3+2 e^3 x\right )\\ &=-\frac {3 \left (2-3 e^3\right ) \log \left (3+3 e^3 x+e^3 x^2\right )}{2 e^3}-x^2 \log \left (3+3 e^3 x+e^3 x^2\right )+\frac {\left (6-e^3 \left (9-8 \log ^4(2)\right )\right ) \log \left (3+3 e^3 x+e^3 x^2\right )}{2 e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 23, normalized size = 0.96 \begin {gather*} -\left (\left (x^2-4 \log ^4(2)\right ) \log \left (3+e^3 x (3+x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 26, normalized size = 1.08 \begin {gather*} {\left (4 \, \log \relax (2)^{4} - x^{2}\right )} \log \left ({\left (x^{2} + 3 \, x\right )} e^{3} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 40, normalized size = 1.67 \begin {gather*} 4 \, \log \relax (2)^{4} \log \left (x^{2} e^{3} + 3 \, x e^{3} + 3\right ) - x^{2} \log \left (x^{2} e^{3} + 3 \, x e^{3} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 39, normalized size = 1.62
method | result | size |
norman | \(4 \ln \relax (2)^{4} \ln \left (\left (x^{2}+3 x \right ) {\mathrm e}^{3}+3\right )-x^{2} \ln \left (\left (x^{2}+3 x \right ) {\mathrm e}^{3}+3\right )\) | \(39\) |
risch | \(-x^{2} \ln \left (\left (x^{2}+3 x \right ) {\mathrm e}^{3}+3\right )+4 \ln \relax (2)^{4} \ln \left (x^{2} {\mathrm e}^{3}+3 x \,{\mathrm e}^{3}+3\right )\) | \(40\) |
default | \(-x^{2} \ln \left (x^{2} {\mathrm e}^{3}+3 x \,{\mathrm e}^{3}+3\right )+4 \ln \relax (2)^{4} \ln \left (x^{2} {\mathrm e}^{3}+3 x \,{\mathrm e}^{3}+3\right )\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 493, normalized size = 20.54 \begin {gather*} 4 \, {\left (e^{\left (-3\right )} \log \left (x^{2} e^{3} + 3 \, x e^{3} + 3\right ) - \frac {\sqrt {3} e^{\left (-\frac {3}{2}\right )} \log \left (\frac {2 \, x e^{3} - \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}{2 \, x e^{3} + \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}\right )}{\sqrt {3 \, e^{3} - 4}}\right )} e^{3} \log \relax (2)^{4} + \frac {4 \, \sqrt {3} e^{\frac {3}{2}} \log \relax (2)^{4} \log \left (\frac {2 \, x e^{3} - \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}{2 \, x e^{3} + \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}\right )}{\sqrt {3 \, e^{3} - 4}} - \frac {3}{2} \, \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\left (-\frac {3}{2}\right )} \log \left (\frac {2 \, x e^{3} - \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}{2 \, x e^{3} + \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}\right ) - {\left (3 \, {\left (3 \, e^{3} - 1\right )} e^{\left (-6\right )} \log \left (x^{2} e^{3} + 3 \, x e^{3} + 3\right ) - \frac {9 \, \sqrt {3} {\left (e^{3} - 1\right )} e^{\left (-\frac {9}{2}\right )} \log \left (\frac {2 \, x e^{3} - \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}{2 \, x e^{3} + \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}\right )}{\sqrt {3 \, e^{3} - 4}} + {\left (x^{2} - 6 \, x\right )} e^{\left (-3\right )}\right )} e^{3} - \frac {3}{2} \, {\left (\frac {\sqrt {3} {\left (3 \, e^{3} - 2\right )} e^{\left (-\frac {9}{2}\right )} \log \left (\frac {2 \, x e^{3} - \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}{2 \, x e^{3} + \sqrt {3} \sqrt {3 \, e^{3} - 4} e^{\frac {3}{2}} + 3 \, e^{3}}\right )}{\sqrt {3 \, e^{3} - 4}} + 2 \, x e^{\left (-3\right )} - 3 \, e^{\left (-3\right )} \log \left (x^{2} e^{3} + 3 \, x e^{3} + 3\right )\right )} e^{3} + \frac {1}{2} \, {\left (2 \, x^{2} e^{3} - 6 \, x e^{3} - {\left (2 \, x^{2} e^{3} - 9 \, e^{3} + 6\right )} \log \left (x^{2} e^{3} + 3 \, x e^{3} + 3\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.71, size = 27, normalized size = 1.12 \begin {gather*} \ln \left ({\mathrm {e}}^3\,x^2+3\,{\mathrm {e}}^3\,x+3\right )\,\left (4\,{\ln \relax (2)}^4-x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 39, normalized size = 1.62 \begin {gather*} - x^{2} \log {\left (\left (x^{2} + 3 x\right ) e^{3} + 3 \right )} + 4 \log {\relax (2 )}^{4} \log {\left (x^{2} e^{3} + 3 x e^{3} + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________