Optimal. Leaf size=23 \[ \frac {3}{4} \left (-1+5 e^3\right )^2+\frac {x}{-1+x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+\log (x)}{1-2 x+x^2+(-2+2 x) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+\log (x)}{(1-x-\log (x))^2} \, dx\\ &=\int \left (\frac {-1-x}{(-1+x+\log (x))^2}+\frac {1}{-1+x+\log (x)}\right ) \, dx\\ &=\int \frac {-1-x}{(-1+x+\log (x))^2} \, dx+\int \frac {1}{-1+x+\log (x)} \, dx\\ &=\int \frac {1}{-1+x+\log (x)} \, dx+\int \left (-\frac {1}{(-1+x+\log (x))^2}-\frac {x}{(-1+x+\log (x))^2}\right ) \, dx\\ &=-\int \frac {1}{(-1+x+\log (x))^2} \, dx-\int \frac {x}{(-1+x+\log (x))^2} \, dx+\int \frac {1}{-1+x+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 9, normalized size = 0.39 \begin {gather*} \frac {x}{-1+x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 9, normalized size = 0.39 \begin {gather*} \frac {x}{x + \log \relax (x) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 9, normalized size = 0.39 \begin {gather*} \frac {x}{x + \log \relax (x) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 10, normalized size = 0.43
method | result | size |
norman | \(\frac {x}{-1+\ln \relax (x )+x}\) | \(10\) |
risch | \(\frac {x}{-1+\ln \relax (x )+x}\) | \(10\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 9, normalized size = 0.39 \begin {gather*} \frac {x}{x + \log \relax (x) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 9, normalized size = 0.39 \begin {gather*} \frac {x}{x+\ln \relax (x)-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 7, normalized size = 0.30 \begin {gather*} \frac {x}{x + \log {\relax (x )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________