Optimal. Leaf size=28 \[ \frac {5}{-e^{4 e^e} x+\log \left (\frac {2}{(-4-x) x^2}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 3, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {5}{e^{4 e^e} x-\log \left (-\frac {2}{x^2 (x+4)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (8+\left (3+4 e^{4 e^e}\right ) x+e^{4 e^e} x^2\right )}{x (4+x) \left (e^{4 e^e} x-\log \left (-\frac {2}{x^2 (4+x)}\right )\right )^2} \, dx\\ &=5 \int \frac {8+\left (3+4 e^{4 e^e}\right ) x+e^{4 e^e} x^2}{x (4+x) \left (e^{4 e^e} x-\log \left (-\frac {2}{x^2 (4+x)}\right )\right )^2} \, dx\\ &=-\frac {5}{e^{4 e^e} x-\log \left (-\frac {2}{x^2 (4+x)}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 26, normalized size = 0.93 \begin {gather*} \frac {5}{-e^{4 e^e} x+\log \left (-\frac {2}{x^2 (4+x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 29, normalized size = 1.04 \begin {gather*} -\frac {5}{x e^{\left (4 \, e^{e}\right )} - \log \left (-\frac {2}{x^{3} + 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 29, normalized size = 1.04 \begin {gather*} -\frac {5}{x e^{\left (4 \, e^{e}\right )} - \log \left (-\frac {2}{x^{3} + 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 30, normalized size = 1.07
method | result | size |
norman | \(-\frac {5}{x \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}}}-\ln \left (-\frac {2}{x^{3}+4 x^{2}}\right )}\) | \(30\) |
risch | \(-\frac {5}{x \,{\mathrm e}^{4 \,{\mathrm e}^{{\mathrm e}}}-\ln \left (-\frac {2}{x^{3}+4 x^{2}}\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 27, normalized size = 0.96 \begin {gather*} -\frac {5}{x e^{\left (4 \, e^{e}\right )} - \log \relax (2) + 2 \, \log \relax (x) + \log \left (-x - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 10.16, size = 28, normalized size = 1.00 \begin {gather*} \frac {5}{\ln \left (-\frac {2}{x^3+4\,x^2}\right )-x\,{\mathrm {e}}^{4\,{\mathrm {e}}^{\mathrm {e}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 0.86 \begin {gather*} \frac {5}{- x e^{4 e^{e}} + \log {\left (- \frac {2}{x^{3} + 4 x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________