Optimal. Leaf size=24 \[ x-\log (5) \left (\log ^2(3)+\log \left (1+\frac {1}{4} \left (-1+e^4+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 13, normalized size of antiderivative = 0.54, number of steps used = 2, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {43} \begin {gather*} x-\log (5) \log \left (x+e^4+3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {\log (5)}{3+e^4+x}\right ) \, dx\\ &=x-\log (5) \log \left (3+e^4+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 13, normalized size = 0.54 \begin {gather*} x-\log (5) \log \left (3+e^4+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 12, normalized size = 0.50 \begin {gather*} -\log \relax (5) \log \left (x + e^{4} + 3\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 13, normalized size = 0.54 \begin {gather*} -\log \relax (5) \log \left ({\left | x + e^{4} + 3 \right |}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 13, normalized size = 0.54
method | result | size |
default | \(x -\ln \relax (5) \ln \left ({\mathrm e}^{4}+3+x \right )\) | \(13\) |
norman | \(x -\ln \relax (5) \ln \left ({\mathrm e}^{4}+3+x \right )\) | \(13\) |
risch | \(x -\ln \relax (5) \ln \left ({\mathrm e}^{4}+3+x \right )\) | \(13\) |
meijerg | \(-\ln \relax (5) \ln \left (1+\frac {x}{{\mathrm e}^{4}+3}\right )+{\mathrm e}^{4} \ln \left (1+\frac {x}{{\mathrm e}^{4}+3}\right )+3 \ln \left (1+\frac {x}{{\mathrm e}^{4}+3}\right )+\left ({\mathrm e}^{4}+3\right ) \left (\frac {x}{{\mathrm e}^{4}+3}-\ln \left (1+\frac {x}{{\mathrm e}^{4}+3}\right )\right )\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 12, normalized size = 0.50 \begin {gather*} -\log \relax (5) \log \left (x + e^{4} + 3\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.13, size = 12, normalized size = 0.50 \begin {gather*} x-\ln \relax (5)\,\ln \left (x+{\mathrm {e}}^4+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 12, normalized size = 0.50 \begin {gather*} x - \log {\relax (5 )} \log {\left (x + 3 + e^{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________