Optimal. Leaf size=35 \[ \frac {1}{9} \left (\frac {e^{2-e^x}}{x}-\log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 16.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\frac {e^{4-2 e^x} \left (2 x+\left (2-2 x^2\right ) \log (4)+e^x \left (2 x^2+\left (2 x-2 x^3\right ) \log (4)\right )\right )}{x^2}+\left (-2 x+4 x^2 \log (4)\right ) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )+\frac {e^{2-e^x} \left (2 x-4 x^2 \log (4)+\left (-2 x+\left (-2+2 x^2\right ) \log (4)+e^x \left (-2 x^2+\left (-2 x+2 x^3\right ) \log (4)\right )\right ) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x}}{-9 x^2+\left (-9 x+9 x^3\right ) \log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-2 e^x} \left (e^2 \left (-x-\log (4)+x^2 \log (4)\right )+e^{2+x} x \left (-x-\log (4)+x^2 \log (4)\right )+e^{e^x} x^2 (-1+x \log (16))\right ) \left (e^2-e^{e^x} x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{9 x^3 \left (x+\log (4)-x^2 \log (4)\right )} \, dx\\ &=\frac {2}{9} \int \frac {e^{-2 e^x} \left (e^2 \left (-x-\log (4)+x^2 \log (4)\right )+e^{2+x} x \left (-x-\log (4)+x^2 \log (4)\right )+e^{e^x} x^2 (-1+x \log (16))\right ) \left (e^2-e^{e^x} x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^3 \left (x+\log (4)-x^2 \log (4)\right )} \, dx\\ &=\frac {2}{9} \int \left (-\frac {e^{2-2 e^x+x} \left (e^2-e^{e^x} x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^2}+\frac {e^{-2 e^x} \left (-e^2 x-e^{e^x} x^2-e^2 \log (4)+e^2 x^2 \log (4)+e^{e^x} x^3 \log (16)\right ) \left (-e^2+e^{e^x} x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^3 \left (-x-\log (4)+x^2 \log (4)\right )}\right ) \, dx\\ &=-\left (\frac {2}{9} \int \frac {e^{2-2 e^x+x} \left (e^2-e^{e^x} x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^2} \, dx\right )+\frac {2}{9} \int \frac {e^{-2 e^x} \left (-e^2 x-e^{e^x} x^2-e^2 \log (4)+e^2 x^2 \log (4)+e^{e^x} x^3 \log (16)\right ) \left (-e^2+e^{e^x} x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^3 \left (-x-\log (4)+x^2 \log (4)\right )} \, dx\\ &=-\left (\frac {2}{9} \int \left (\frac {e^{4-2 e^x+x}}{x^2}-\frac {e^{2-e^x+x} \log \left (-x-\log (4)+x^2 \log (4)\right )}{x}\right ) \, dx\right )+\frac {2}{9} \int \left (-\frac {e^{4-2 e^x}}{x^3}+\frac {(1-x \log (16)) \log \left (-x-\log (4)+x^2 \log (4)\right )}{x+\log (4)-x^2 \log (4)}+\frac {e^{2-e^x} \left (x-x^2 \log (16)-x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )-\log (4) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )+x^2 \log (4) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^2 \left (-x-\log (4)+x^2 \log (4)\right )}\right ) \, dx\\ &=-\left (\frac {2}{9} \int \frac {e^{4-2 e^x}}{x^3} \, dx\right )-\frac {2}{9} \int \frac {e^{4-2 e^x+x}}{x^2} \, dx+\frac {2}{9} \int \frac {e^{2-e^x+x} \log \left (-x-\log (4)+x^2 \log (4)\right )}{x} \, dx+\frac {2}{9} \int \frac {(1-x \log (16)) \log \left (-x-\log (4)+x^2 \log (4)\right )}{x+\log (4)-x^2 \log (4)} \, dx+\frac {2}{9} \int \frac {e^{2-e^x} \left (x-x^2 \log (16)-x \log \left (-x+\left (-1+x^2\right ) \log (4)\right )-\log (4) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )+x^2 \log (4) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^2 \left (-x-\log (4)+x^2 \log (4)\right )} \, dx\\ &=-\left (\frac {2}{9} \int \frac {e^{-2 \left (-2+e^x\right )}}{x^3} \, dx\right )-\frac {2}{9} \int \frac {e^{4-2 e^x+x}}{x^2} \, dx+\frac {2}{9} \int \left (-\frac {\log (16) \log \left (-x-\log (4)+x^2 \log (4)\right )}{1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}}-\frac {\log (16) \log \left (-x-\log (4)+x^2 \log (4)\right )}{1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}}\right ) \, dx+\frac {2}{9} \int \frac {e^{2-e^x} \left (-x+x^2 \log (16)-\left (-x-\log (4)+x^2 \log (4)\right ) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x^2 \left (x+\log (4)-x^2 \log (4)\right )} \, dx-\frac {2}{9} \int \frac {(1-x \log (16)) \int \frac {e^{2-e^x+x}}{x} \, dx}{x+\log (4)-x^2 \log (4)} \, dx+\frac {1}{9} \left (2 \log \left (-x-\log (4)+x^2 \log (4)\right )\right ) \int \frac {e^{2-e^x+x}}{x} \, dx\\ &=-\left (\frac {2}{9} \int \frac {e^{-2 \left (-2+e^x\right )}}{x^3} \, dx\right )-\frac {2}{9} \int \frac {e^{4-2 e^x+x}}{x^2} \, dx+\frac {2}{9} \int \left (\frac {e^{2-e^x} (1-x \log (16))}{x \left (-x-\log (4)+x^2 \log (4)\right )}+\frac {e^{2-e^x} \log \left (-x-\log (4)+x^2 \log (4)\right )}{x^2}\right ) \, dx-\frac {2}{9} \int \left (-\frac {\int \frac {e^{2-e^x+x}}{x} \, dx}{-x-\log (4)+x^2 \log (4)}+\frac {x \log (16) \int \frac {e^{2-e^x+x}}{x} \, dx}{-x-\log (4)+x^2 \log (4)}\right ) \, dx-\frac {1}{9} (2 \log (16)) \int \frac {\log \left (-x-\log (4)+x^2 \log (4)\right )}{1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}} \, dx-\frac {1}{9} (2 \log (16)) \int \frac {\log \left (-x-\log (4)+x^2 \log (4)\right )}{1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}} \, dx+\frac {1}{9} \left (2 \log \left (-x-\log (4)+x^2 \log (4)\right )\right ) \int \frac {e^{2-e^x+x}}{x} \, dx\\ &=\frac {\log (16) \log \left (-x-\log (4)+x^2 \log (4)\right ) \log \left (1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}\right )}{9 \log (4)}+\frac {\log (16) \log \left (-x-\log (4)+x^2 \log (4)\right ) \log \left (1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}\right )}{9 \log (4)}-\frac {2}{9} \int \frac {e^{-2 \left (-2+e^x\right )}}{x^3} \, dx-\frac {2}{9} \int \frac {e^{4-2 e^x+x}}{x^2} \, dx+\frac {2}{9} \int \frac {e^{2-e^x} (1-x \log (16))}{x \left (-x-\log (4)+x^2 \log (4)\right )} \, dx+\frac {2}{9} \int \frac {e^{2-e^x} \log \left (-x-\log (4)+x^2 \log (4)\right )}{x^2} \, dx+\frac {2}{9} \int \frac {\int \frac {e^{2-e^x+x}}{x} \, dx}{-x-\log (4)+x^2 \log (4)} \, dx-\frac {1}{9} (2 \log (16)) \int \frac {x \int \frac {e^{2-e^x+x}}{x} \, dx}{-x-\log (4)+x^2 \log (4)} \, dx-\frac {\log (16) \int \frac {(-1+2 x \log (4)) \log \left (1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}\right )}{-x-\log (4)+x^2 \log (4)} \, dx}{9 \log (4)}-\frac {\log (16) \int \frac {(-1+2 x \log (4)) \log \left (1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}\right )}{-x-\log (4)+x^2 \log (4)} \, dx}{9 \log (4)}+\frac {1}{9} \left (2 \log \left (-x-\log (4)+x^2 \log (4)\right )\right ) \int \frac {e^{2-e^x+x}}{x} \, dx\\ &=\frac {\log (16) \log \left (-x-\log (4)+x^2 \log (4)\right ) \log \left (1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}\right )}{9 \log (4)}+\frac {\log (16) \log \left (-x-\log (4)+x^2 \log (4)\right ) \log \left (1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}\right )}{9 \log (4)}-\frac {2}{9} \int \frac {e^{-2 \left (-2+e^x\right )}}{x^3} \, dx-\frac {2}{9} \int \frac {e^{4-2 e^x+x}}{x^2} \, dx+\frac {2}{9} \int \left (-\frac {e^{2-e^x}}{x \log (4)}+\frac {e^{2-e^x} (-1+x \log (4)-\log (4) \log (16))}{\log (4) \left (-x-\log (4)+x^2 \log (4)\right )}\right ) \, dx-\frac {2}{9} \int \frac {(1-x \log (16)) \int \frac {e^{2-e^x}}{x^2} \, dx}{x+\log (4)-x^2 \log (4)} \, dx+\frac {2}{9} \int \left (-\frac {2 \log (4) \int \frac {e^{2-e^x+x}}{x} \, dx}{\sqrt {1+4 \log ^2(4)} \left (1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}\right )}-\frac {2 \log (4) \int \frac {e^{2-e^x+x}}{x} \, dx}{\sqrt {1+4 \log ^2(4)} \left (-1+\sqrt {1+4 \log ^2(4)}+x \log (16)\right )}\right ) \, dx-\frac {1}{9} (2 \log (16)) \int \left (\frac {\left (1+\frac {1}{\sqrt {1+4 \log ^2(4)}}\right ) \int \frac {e^{2-e^x+x}}{x} \, dx}{-1+2 x \log (4)-\sqrt {1+4 \log ^2(4)}}+\frac {\left (1-\frac {1}{\sqrt {1+4 \log ^2(4)}}\right ) \int \frac {e^{2-e^x+x}}{x} \, dx}{-1+2 x \log (4)+\sqrt {1+4 \log ^2(4)}}\right ) \, dx-\frac {\log (16) \int \left (\frac {2 \log (4) \log \left (1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}\right )}{-1+2 x \log (4)-\sqrt {1+4 \log ^2(4)}}+\frac {2 \log (4) \log \left (1-2 x \log (4)-\sqrt {1+4 \log ^2(4)}\right )}{-1+2 x \log (4)+\sqrt {1+4 \log ^2(4)}}\right ) \, dx}{9 \log (4)}-\frac {\log (16) \int \left (\frac {2 \log (4) \log \left (1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}\right )}{-1+2 x \log (4)-\sqrt {1+4 \log ^2(4)}}+\frac {2 \log (4) \log \left (1-2 x \log (4)+\sqrt {1+4 \log ^2(4)}\right )}{-1+2 x \log (4)+\sqrt {1+4 \log ^2(4)}}\right ) \, dx}{9 \log (4)}+\frac {1}{9} \left (2 \log \left (-x-\log (4)+x^2 \log (4)\right )\right ) \int \frac {e^{2-e^x}}{x^2} \, dx+\frac {1}{9} \left (2 \log \left (-x-\log (4)+x^2 \log (4)\right )\right ) \int \frac {e^{2-e^x+x}}{x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.22, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\frac {e^{4-2 e^x} \left (2 x+\left (2-2 x^2\right ) \log (4)+e^x \left (2 x^2+\left (2 x-2 x^3\right ) \log (4)\right )\right )}{x^2}+\left (-2 x+4 x^2 \log (4)\right ) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )+\frac {e^{2-e^x} \left (2 x-4 x^2 \log (4)+\left (-2 x+\left (-2+2 x^2\right ) \log (4)+e^x \left (-2 x^2+\left (-2 x+2 x^3\right ) \log (4)\right )\right ) \log \left (-x+\left (-1+x^2\right ) \log (4)\right )\right )}{x}}{-9 x^2+\left (-9 x+9 x^3\right ) \log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 59, normalized size = 1.69 \begin {gather*} -\frac {2}{9} \, e^{\left (-e^{x} - \log \relax (x) + 2\right )} \log \left (2 \, {\left (x^{2} - 1\right )} \log \relax (2) - x\right ) + \frac {1}{9} \, \log \left (2 \, {\left (x^{2} - 1\right )} \log \relax (2) - x\right )^{2} + \frac {1}{9} \, e^{\left (-2 \, e^{x} - 2 \, \log \relax (x) + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (4 \, x^{2} \log \relax (2) + {\left ({\left (x^{2} - 2 \, {\left (x^{3} - x\right )} \log \relax (2)\right )} e^{x} - 2 \, {\left (x^{2} - 1\right )} \log \relax (2) + x\right )} \log \left (2 \, {\left (x^{2} - 1\right )} \log \relax (2) - x\right ) - x\right )} e^{\left (-e^{x} - \log \relax (x) + 2\right )} - {\left ({\left (x^{2} - 2 \, {\left (x^{3} - x\right )} \log \relax (2)\right )} e^{x} - 2 \, {\left (x^{2} - 1\right )} \log \relax (2) + x\right )} e^{\left (-2 \, e^{x} - 2 \, \log \relax (x) + 4\right )} - {\left (4 \, x^{2} \log \relax (2) - x\right )} \log \left (2 \, {\left (x^{2} - 1\right )} \log \relax (2) - x\right )\right )}}{9 \, {\left (x^{2} - 2 \, {\left (x^{3} - x\right )} \log \relax (2)\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 58, normalized size = 1.66
method | result | size |
risch | \(\frac {\ln \left (2 \left (x^{2}-1\right ) \ln \relax (2)-x \right )^{2}}{9}+\frac {{\mathrm e}^{-2 \,{\mathrm e}^{x}+4}}{9 x^{2}}-\frac {2 \ln \left (2 \left (x^{2}-1\right ) \ln \relax (2)-x \right ) {\mathrm e}^{-{\mathrm e}^{x}+2}}{9 x}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 61, normalized size = 1.74 \begin {gather*} \frac {x^{2} \log \left (2 \, x^{2} \log \relax (2) - x - 2 \, \log \relax (2)\right )^{2} - 2 \, x e^{\left (-e^{x} + 2\right )} \log \left (2 \, x^{2} \log \relax (2) - x - 2 \, \log \relax (2)\right ) + e^{\left (-2 \, e^{x} + 4\right )}}{9 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{2-\ln \relax (x)-{\mathrm {e}}^x}\,\left (8\,x^2\,\ln \relax (2)-2\,x+\ln \left (2\,\ln \relax (2)\,\left (x^2-1\right )-x\right )\,\left (2\,x+{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (2\,x-2\,x^3\right )+2\,x^2\right )-2\,\ln \relax (2)\,\left (2\,x^2-2\right )\right )\right )-{\mathrm {e}}^{4-2\,\ln \relax (x)-2\,{\mathrm {e}}^x}\,\left (2\,x+{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (2\,x-2\,x^3\right )+2\,x^2\right )-2\,\ln \relax (2)\,\left (2\,x^2-2\right )\right )+\ln \left (2\,\ln \relax (2)\,\left (x^2-1\right )-x\right )\,\left (2\,x-8\,x^2\,\ln \relax (2)\right )}{2\,\ln \relax (2)\,\left (9\,x-9\,x^3\right )+9\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.14, size = 58, normalized size = 1.66 \begin {gather*} \frac {\log {\left (- x + \left (2 x^{2} - 2\right ) \log {\relax (2 )} \right )}^{2}}{9} + \frac {- 18 x^{2} e^{2 - e^{x}} \log {\left (- x + \left (2 x^{2} - 2\right ) \log {\relax (2 )} \right )} + 9 x e^{4 - 2 e^{x}}}{81 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________