Optimal. Leaf size=23 \[ x^3 \left (2+\frac {3 x \left (e^x-\log (3+x)\right )}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-9 x^3-3 x^4\right )+\left (-3 x^4+e^x \left (36 x^3+21 x^4+3 x^5\right )\right ) \log (x)+\left (18 x^2+6 x^3\right ) \log ^2(x)+\left (9 x^3+3 x^4+\left (-36 x^3-12 x^4\right ) \log (x)\right ) \log (3+x)}{(3+x) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 3 x^2 \left (2+\frac {x \left (-e^x+\log (3+x)\right )}{\log ^2(x)}+\frac {x \left (-x+e^x \left (12+7 x+x^2\right )-4 (3+x) \log (3+x)\right )}{(3+x) \log (x)}\right ) \, dx\\ &=3 \int x^2 \left (2+\frac {x \left (-e^x+\log (3+x)\right )}{\log ^2(x)}+\frac {x \left (-x+e^x \left (12+7 x+x^2\right )-4 (3+x) \log (3+x)\right )}{(3+x) \log (x)}\right ) \, dx\\ &=3 \int \left (\frac {e^x x^3 (-1+4 \log (x)+x \log (x))}{\log ^2(x)}-\frac {x^2 \left (x^2 \log (x)-6 \log ^2(x)-2 x \log ^2(x)-3 x \log (3+x)-x^2 \log (3+x)+12 x \log (x) \log (3+x)+4 x^2 \log (x) \log (3+x)\right )}{(3+x) \log ^2(x)}\right ) \, dx\\ &=3 \int \frac {e^x x^3 (-1+4 \log (x)+x \log (x))}{\log ^2(x)} \, dx-3 \int \frac {x^2 \left (x^2 \log (x)-6 \log ^2(x)-2 x \log ^2(x)-3 x \log (3+x)-x^2 \log (3+x)+12 x \log (x) \log (3+x)+4 x^2 \log (x) \log (3+x)\right )}{(3+x) \log ^2(x)} \, dx\\ &=\frac {3 e^x x^4}{\log (x)}-3 \int x^2 \left (-2-\frac {x \log (3+x)}{\log ^2(x)}+\frac {x (x+4 (3+x) \log (3+x))}{(3+x) \log (x)}\right ) \, dx\\ &=\frac {3 e^x x^4}{\log (x)}-3 \int \left (\frac {x^4-6 x^2 \log (x)-2 x^3 \log (x)}{(3+x) \log (x)}+\frac {x^3 (-1+4 \log (x)) \log (3+x)}{\log ^2(x)}\right ) \, dx\\ &=\frac {3 e^x x^4}{\log (x)}-3 \int \frac {x^4-6 x^2 \log (x)-2 x^3 \log (x)}{(3+x) \log (x)} \, dx-3 \int \frac {x^3 (-1+4 \log (x)) \log (3+x)}{\log ^2(x)} \, dx\\ &=\frac {3 e^x x^4}{\log (x)}-3 \int \left (-2 x^2+\frac {x^4}{(3+x) \log (x)}\right ) \, dx-3 \int \left (-\frac {x^3 \log (3+x)}{\log ^2(x)}+\frac {4 x^3 \log (3+x)}{\log (x)}\right ) \, dx\\ &=2 x^3+\frac {3 e^x x^4}{\log (x)}-3 \int \frac {x^4}{(3+x) \log (x)} \, dx+3 \int \frac {x^3 \log (3+x)}{\log ^2(x)} \, dx-12 \int \frac {x^3 \log (3+x)}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 28, normalized size = 1.22 \begin {gather*} 3 \left (\frac {2 x^3}{3}+\frac {x^4 \left (e^x-\log (3+x)\right )}{\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 29, normalized size = 1.26 \begin {gather*} \frac {3 \, x^{4} e^{x} - 3 \, x^{4} \log \left (x + 3\right ) + 2 \, x^{3} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 29, normalized size = 1.26 \begin {gather*} \frac {3 \, x^{4} e^{x} - 3 \, x^{4} \log \left (x + 3\right ) + 2 \, x^{3} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 33, normalized size = 1.43
method | result | size |
risch | \(-\frac {3 x^{4} \ln \left (3+x \right )}{\ln \relax (x )}+\frac {x^{3} \left (3 \,{\mathrm e}^{x} x +2 \ln \relax (x )\right )}{\ln \relax (x )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 29, normalized size = 1.26 \begin {gather*} \frac {3 \, x^{4} e^{x} - 3 \, x^{4} \log \left (x + 3\right ) + 2 \, x^{3} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.14, size = 90, normalized size = 3.91 \begin {gather*} {\mathrm {e}}^x\,\left (3\,x^5+12\,x^4\right )+2\,x^3+\frac {3\,x^4\,{\mathrm {e}}^x-3\,x^4\,{\mathrm {e}}^x\,\ln \relax (x)\,\left (x+4\right )}{\ln \relax (x)}+\frac {\ln \left (x+3\right )\,\left (\ln \relax (x)\,\left (12\,x^4-\frac {12\,x^6+36\,x^5}{x\,\left (x+3\right )}\right )-3\,x^4\right )}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 29, normalized size = 1.26 \begin {gather*} \frac {3 x^{4} e^{x}}{\log {\relax (x )}} - \frac {3 x^{4} \log {\left (x + 3 \right )}}{\log {\relax (x )}} + 2 x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________