Optimal. Leaf size=25 \[ \frac {\left (-\frac {1}{e^3}+x^2\right ) (-3+\log (3))}{e^4+e^{e^5}} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 0.88, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6, 12, 30} \begin {gather*} -\frac {x^2 (3-\log (3))}{e^4+e^{e^5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 30
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x (-6+2 \log (3))}{e^4+e^{e^5}} \, dx\\ &=\frac {(-6+2 \log (3)) \int x \, dx}{e^4+e^{e^5}}\\ &=-\frac {x^2 (3-\log (3))}{e^4+e^{e^5}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 19, normalized size = 0.76 \begin {gather*} \frac {x^2 (-3+\log (3))}{e^4+e^{e^5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^{2} \log \relax (3) - 3 \, x^{2}}{e^{4} + e^{\left (e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^{2} \log \relax (3) - 3 \, x^{2}}{e^{4} + e^{\left (e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.68
method | result | size |
gosper | \(\frac {x^{2} \left (\ln \relax (3)-3\right )}{{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{4}}\) | \(17\) |
norman | \(\frac {x^{2} \left (\ln \relax (3)-3\right )}{{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{4}}\) | \(17\) |
default | \(\frac {x^{2} \ln \relax (3)-3 x^{2}}{{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{4}}\) | \(22\) |
risch | \(\frac {x^{2} \ln \relax (3)}{{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{4}}-\frac {3 x^{2}}{{\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{4}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^{2} \log \relax (3) - 3 \, x^{2}}{e^{4} + e^{\left (e^{5}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.14, size = 16, normalized size = 0.64 \begin {gather*} \frac {x^2\,\left (\ln \relax (3)-3\right )}{{\mathrm {e}}^4+{\mathrm {e}}^{{\mathrm {e}}^5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 15, normalized size = 0.60 \begin {gather*} \frac {x^{2} \left (-3 + \log {\relax (3 )}\right )}{e^{4} + e^{e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________