Optimal. Leaf size=36 \[ \frac {-x+x \log \left (\frac {e^x}{2}\right )}{x \left (1+\left (5+e^x\right ) (5-x) x^3\right )} \]
________________________________________________________________________________________
Rubi [F] time = 12.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+75 x^2+5 x^3-5 x^4+e^x \left (15 x^2+6 x^3-2 x^4\right )+\left (-75 x^2+20 x^3+e^x \left (-15 x^2-x^3+x^4\right )\right ) \log \left (\frac {e^x}{2}\right )}{1+50 x^3-10 x^4+625 x^6-250 x^7+25 x^8+e^{2 x} \left (25 x^6-10 x^7+x^8\right )+e^x \left (10 x^3-2 x^4+250 x^6-100 x^7+10 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+15 \left (5+e^x\right ) x^2+\left (5+6 e^x\right ) x^3-\left (5+2 e^x\right ) x^4+x^2 \left (-75+20 x+e^x \left (-15-x+x^2\right )\right ) \log \left (\frac {e^x}{2}\right )}{\left (1+5 \left (5+e^x\right ) x^3-\left (5+e^x\right ) x^4\right )^2} \, dx\\ &=\int \left (-\frac {\left (15+x-x^2+125 x^4-50 x^5+5 x^6\right ) \left (-1+\log \left (\frac {e^x}{2}\right )\right )}{(-5+x) x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}+\frac {15+6 x-2 x^2-15 \log \left (\frac {e^x}{2}\right )-x \log \left (\frac {e^x}{2}\right )+x^2 \log \left (\frac {e^x}{2}\right )}{(-5+x) x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}\right ) \, dx\\ &=-\int \frac {\left (15+x-x^2+125 x^4-50 x^5+5 x^6\right ) \left (-1+\log \left (\frac {e^x}{2}\right )\right )}{(-5+x) x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx+\int \frac {15+6 x-2 x^2-15 \log \left (\frac {e^x}{2}\right )-x \log \left (\frac {e^x}{2}\right )+x^2 \log \left (\frac {e^x}{2}\right )}{(-5+x) x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx\\ &=\int \left (\frac {15+6 x-2 x^2-15 \log \left (\frac {e^x}{2}\right )-x \log \left (\frac {e^x}{2}\right )+x^2 \log \left (\frac {e^x}{2}\right )}{5 (-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}-\frac {15+6 x-2 x^2-15 \log \left (\frac {e^x}{2}\right )-x \log \left (\frac {e^x}{2}\right )+x^2 \log \left (\frac {e^x}{2}\right )}{5 x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}\right ) \, dx-\int \left (-\frac {25 x^3 \left (-1+\log \left (\frac {e^x}{2}\right )\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}+\frac {5 x^4 \left (-1+\log \left (\frac {e^x}{2}\right )\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}+\frac {3 (1+\log (2))-3 \log \left (e^x\right )}{x \left (1+25 x^3+5 e^x x^3-5 x^4-e^x x^4\right )^2}+\frac {1+\log (2)-\log \left (e^x\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}+\frac {1+\log (2)-\log \left (e^x\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {15+6 x-2 x^2-15 \log \left (\frac {e^x}{2}\right )-x \log \left (\frac {e^x}{2}\right )+x^2 \log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx-\frac {1}{5} \int \frac {15+6 x-2 x^2-15 \log \left (\frac {e^x}{2}\right )-x \log \left (\frac {e^x}{2}\right )+x^2 \log \left (\frac {e^x}{2}\right )}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx-5 \int \frac {x^4 \left (-1+\log \left (\frac {e^x}{2}\right )\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx+25 \int \frac {x^3 \left (-1+\log \left (\frac {e^x}{2}\right )\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-\int \frac {3 (1+\log (2))-3 \log \left (e^x\right )}{x \left (1+25 x^3+5 e^x x^3-5 x^4-e^x x^4\right )^2} \, dx-\int \frac {1+\log (2)-\log \left (e^x\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-\int \frac {1+\log (2)-\log \left (e^x\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx\\ &=-\left (\frac {1}{5} \int \frac {-15-6 x+2 x^2-\left (-15-x+x^2\right ) \log \left (\frac {e^x}{2}\right )}{x \left (1+5 \left (5+e^x\right ) x^3-\left (5+e^x\right ) x^4\right )} \, dx\right )+\frac {1}{5} \int \left (\frac {15}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}+\frac {6 x}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}-\frac {2 x^2}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}-\frac {15 \log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}-\frac {x \log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}+\frac {x^2 \log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}\right ) \, dx-5 \int \left (-\frac {x^4}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}+\frac {x^4 \log \left (\frac {e^x}{2}\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}\right ) \, dx+25 \int \left (-\frac {x^3}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}+\frac {x^3 \log \left (\frac {e^x}{2}\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}\right ) \, dx-\int \left (\frac {1+\log (2)}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}-\frac {\log \left (e^x\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}\right ) \, dx-\int \left (\frac {1+\log (2)}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}-\frac {\log \left (e^x\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}\right ) \, dx-\int \left (\frac {3+\log (8)}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}-\frac {3 \log \left (e^x\right )}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {x \log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx\right )+\frac {1}{5} \int \frac {x^2 \log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx-\frac {1}{5} \int \left (\frac {6}{-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4}+\frac {15}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}-\frac {2 x}{-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4}-\frac {\log \left (\frac {e^x}{2}\right )}{-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4}-\frac {15 \log \left (\frac {e^x}{2}\right )}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )}+\frac {x \log \left (\frac {e^x}{2}\right )}{-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4}\right ) \, dx-\frac {2}{5} \int \frac {x^2}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx+\frac {6}{5} \int \frac {x}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx+3 \int \frac {1}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx-3 \int \frac {\log \left (\frac {e^x}{2}\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )} \, dx+3 \int \frac {\log \left (e^x\right )}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx+5 \int \frac {x^4}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-5 \int \frac {x^4 \log \left (\frac {e^x}{2}\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-25 \int \frac {x^3}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx+25 \int \frac {x^3 \log \left (\frac {e^x}{2}\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-(1+\log (2)) \int \frac {1}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-(1+\log (2)) \int \frac {1}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx-(3+\log (8)) \int \frac {1}{x \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx+\int \frac {\log \left (e^x\right )}{\left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx+\int \frac {\log \left (e^x\right )}{(-5+x) \left (-1-25 x^3-5 e^x x^3+5 x^4+e^x x^4\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 34, normalized size = 0.94 \begin {gather*} \frac {1+\log (2)-\log \left (e^x\right )}{-1-5 \left (5+e^x\right ) x^3+\left (5+e^x\right ) x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 35, normalized size = 0.97 \begin {gather*} -\frac {x - \log \relax (2) - 1}{5 \, x^{4} - 25 \, x^{3} + {\left (x^{4} - 5 \, x^{3}\right )} e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 36, normalized size = 1.00 \begin {gather*} -\frac {x - \log \relax (2) - 1}{x^{4} e^{x} + 5 \, x^{4} - 5 \, x^{3} e^{x} - 25 \, x^{3} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 38, normalized size = 1.06
method | result | size |
default | \(\frac {1-\ln \left (\frac {{\mathrm e}^{x}}{2}\right )}{{\mathrm e}^{x} x^{4}-5 \,{\mathrm e}^{x} x^{3}+5 x^{4}-25 x^{3}-1}\) | \(38\) |
risch | \(-\frac {\ln \left ({\mathrm e}^{x}\right )}{{\mathrm e}^{x} x^{4}-5 \,{\mathrm e}^{x} x^{3}+5 x^{4}-25 x^{3}-1}+\frac {1}{{\mathrm e}^{x} x^{4}-5 \,{\mathrm e}^{x} x^{3}+5 x^{4}-25 x^{3}-1}+\frac {\ln \relax (2)}{{\mathrm e}^{x} x^{4}-5 \,{\mathrm e}^{x} x^{3}+5 x^{4}-25 x^{3}-1}\) | \(91\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 35, normalized size = 0.97 \begin {gather*} -\frac {x - \log \relax (2) - 1}{5 \, x^{4} - 25 \, x^{3} + {\left (x^{4} - 5 \, x^{3}\right )} e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (-2\,x^4+6\,x^3+15\,x^2\right )-\ln \left (\frac {{\mathrm {e}}^x}{2}\right )\,\left (75\,x^2-20\,x^3+{\mathrm {e}}^x\,\left (-x^4+x^3+15\,x^2\right )\right )+75\,x^2+5\,x^3-5\,x^4+1}{{\mathrm {e}}^{2\,x}\,\left (x^8-10\,x^7+25\,x^6\right )+{\mathrm {e}}^x\,\left (10\,x^8-100\,x^7+250\,x^6-2\,x^4+10\,x^3\right )+50\,x^3-10\,x^4+625\,x^6-250\,x^7+25\,x^8+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 29, normalized size = 0.81 \begin {gather*} \frac {- x + \log {\relax (2 )} + 1}{5 x^{4} - 25 x^{3} + \left (x^{4} - 5 x^{3}\right ) e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________