Optimal. Leaf size=29 \[ \frac {25 \left (5-\frac {1}{5} x (3+x)\right )}{1-\left (4+e^3-x\right )^2 x} \]
________________________________________________________________________________________
Rubi [F] time = 180.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 36, normalized size = 1.24 \begin {gather*} \frac {5 \left (-25+3 x+x^2\right )}{-1+\left (4+e^3\right )^2 x-2 \left (4+e^3\right ) x^2+x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 40, normalized size = 1.38 \begin {gather*} \frac {5 \, {\left (x^{2} + 3 \, x - 25\right )}}{x^{3} - 8 \, x^{2} + x e^{6} - 2 \, {\left (x^{2} - 4 \, x\right )} e^{3} + 16 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.62, size = 31, normalized size = 1.07 \begin {gather*} 4.569118653734130163 \times 10^{16} \, \log \left (x - 0.001724048629546139142\right ) - 1.808434789016200504 \times 10^{6} \, \log \left (x - 23.88081680205305961\right ) + 1.808416357463456109 \times 10^{6} \, \log \left (x - 23.88099207781958486\right ) + 1.8261087744196467752 \times 10^{6} \, \log \left (x - 24.288357140090717098\right ) - 1.826090325252777360 \times 10^{6} \, \log \left (x - 24.28853357552813258\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 43, normalized size = 1.48
method | result | size |
risch | \(\frac {5 x^{2}+15 x -125}{x \,{\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{3}+8 x \,{\mathrm e}^{3}-8 x^{2}+16 x -1}\) | \(43\) |
gosper | \(\frac {5 x^{2}+15 x -125}{x \,{\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{3}+8 x \,{\mathrm e}^{3}-8 x^{2}+16 x -1}\) | \(44\) |
norman | \(\frac {5 x^{2}+15 x -125}{x \,{\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{3}+8 x \,{\mathrm e}^{3}-8 x^{2}+16 x -1}\) | \(45\) |
default | \(\frac {5 \left (\munderset {\textit {\_R} =\RootOf \left (1+\textit {\_Z}^{6}+\left (-4 \,{\mathrm e}^{3}-16\right ) \textit {\_Z}^{5}+\left (48 \,{\mathrm e}^{3}+6 \,{\mathrm e}^{6}+96\right ) \textit {\_Z}^{4}+\left (-192 \,{\mathrm e}^{3}-4 \,{\mathrm e}^{9}-48 \,{\mathrm e}^{6}-258\right ) \textit {\_Z}^{3}+\left ({\mathrm e}^{12}+260 \,{\mathrm e}^{3}+16 \,{\mathrm e}^{9}+96 \,{\mathrm e}^{6}+272\right ) \textit {\_Z}^{2}+\left (-16 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-32\right ) \textit {\_Z} \right )}{\sum }\frac {\left (397-\textit {\_R}^{4}-6 \textit {\_R}^{3}+\left (14 \,{\mathrm e}^{3}+{\mathrm e}^{6}+115\right ) \textit {\_R}^{2}+2 \left (-201-50 \,{\mathrm e}^{3}\right ) \textit {\_R} +25 \,{\mathrm e}^{6}+200 \,{\mathrm e}^{3}\right ) \ln \left (x -\textit {\_R} \right )}{-16+\textit {\_R} \,{\mathrm e}^{12}-6 \textit {\_R}^{2} {\mathrm e}^{9}+12 \textit {\_R}^{3} {\mathrm e}^{6}-10 \textit {\_R}^{4} {\mathrm e}^{3}+3 \textit {\_R}^{5}+16 \textit {\_R} \,{\mathrm e}^{9}-72 \textit {\_R}^{2} {\mathrm e}^{6}+96 \textit {\_R}^{3} {\mathrm e}^{3}-40 \textit {\_R}^{4}+96 \textit {\_R} \,{\mathrm e}^{6}-288 \textit {\_R}^{2} {\mathrm e}^{3}+192 \textit {\_R}^{3}-{\mathrm e}^{6}+260 \textit {\_R} \,{\mathrm e}^{3}-387 \textit {\_R}^{2}-8 \,{\mathrm e}^{3}+272 \textit {\_R}}\right )}{2}\) | \(230\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 36, normalized size = 1.24 \begin {gather*} \frac {5 \, {\left (x^{2} + 3 \, x - 25\right )}}{x^{3} - 2 \, x^{2} {\left (e^{3} + 4\right )} + x {\left (e^{6} + 8 \, e^{3} + 16\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.81, size = 42, normalized size = 1.45 \begin {gather*} -\frac {5\,x^2+15\,x-125}{-x^3+\left (2\,{\mathrm {e}}^3+8\right )\,x^2+\left (-8\,{\mathrm {e}}^3-{\mathrm {e}}^6-16\right )\,x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.13, size = 39, normalized size = 1.34 \begin {gather*} - \frac {- 5 x^{2} - 15 x + 125}{x^{3} + x^{2} \left (- 2 e^{3} - 8\right ) + x \left (16 + 8 e^{3} + e^{6}\right ) - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________