Optimal. Leaf size=22 \[ \log \left (\frac {-2 x-\log \left (1+e^{4 x}\right )}{\log \left (x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.36, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-4 e^{4 x} x+\left (-2-2 e^{4 x}\right ) \log \left (1+e^{4 x}\right )+\left (2 x+6 e^{4 x} x\right ) \log \left (x^2\right )}{\left (2 x^2+2 e^{4 x} x^2\right ) \log \left (x^2\right )+\left (x+e^{4 x} x\right ) \log \left (1+e^{4 x}\right ) \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x-4 e^{4 x} x+\left (-2-2 e^{4 x}\right ) \log \left (1+e^{4 x}\right )+\left (2 x+6 e^{4 x} x\right ) \log \left (x^2\right )}{\left (1+e^{4 x}\right ) x \left (2 x+\log \left (1+e^{4 x}\right )\right ) \log \left (x^2\right )} \, dx\\ &=\int \left (-\frac {4}{\left (1+e^{4 x}\right ) \left (2 x+\log \left (1+e^{4 x}\right )\right )}+\frac {2 \left (-2 x-\log \left (1+e^{4 x}\right )+3 x \log \left (x^2\right )\right )}{x \left (2 x+\log \left (1+e^{4 x}\right )\right ) \log \left (x^2\right )}\right ) \, dx\\ &=2 \int \frac {-2 x-\log \left (1+e^{4 x}\right )+3 x \log \left (x^2\right )}{x \left (2 x+\log \left (1+e^{4 x}\right )\right ) \log \left (x^2\right )} \, dx-4 \int \frac {1}{\left (1+e^{4 x}\right ) \left (2 x+\log \left (1+e^{4 x}\right )\right )} \, dx\\ &=2 \int \left (\frac {3}{2 x+\log \left (1+e^{4 x}\right )}-\frac {1}{x \log \left (x^2\right )}\right ) \, dx-2 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x}\right ) \left (x+\log \left (1+e^{2 x}\right )\right )} \, dx,x,2 x\right )\\ &=-\left (2 \int \frac {1}{x \log \left (x^2\right )} \, dx\right )-2 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x}\right ) \left (x+\log \left (1+e^{2 x}\right )\right )} \, dx,x,2 x\right )+6 \int \frac {1}{2 x+\log \left (1+e^{4 x}\right )} \, dx\\ &=-\left (2 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x}\right ) \left (x+\log \left (1+e^{2 x}\right )\right )} \, dx,x,2 x\right )\right )+3 \operatorname {Subst}\left (\int \frac {1}{x+\log \left (1+e^{2 x}\right )} \, dx,x,2 x\right )-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (x^2\right )\right )\\ &=-\log \left (\log \left (x^2\right )\right )-2 \operatorname {Subst}\left (\int \frac {1}{\left (1+e^{2 x}\right ) \left (x+\log \left (1+e^{2 x}\right )\right )} \, dx,x,2 x\right )+3 \operatorname {Subst}\left (\int \frac {1}{x+\log \left (1+e^{2 x}\right )} \, dx,x,2 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 21, normalized size = 0.95 \begin {gather*} \log \left (2 x+\log \left (1+e^{4 x}\right )\right )-\log \left (\log \left (x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 20, normalized size = 0.91 \begin {gather*} \log \left (2 \, x + \log \left (e^{\left (4 \, x\right )} + 1\right )\right ) - \log \left (\log \left (x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 20, normalized size = 0.91 \begin {gather*} \log \left (2 \, x + \log \left (e^{\left (4 \, x\right )} + 1\right )\right ) - \log \left (\log \left (x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 62, normalized size = 2.82
method | result | size |
risch | \(-\ln \left (\ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (\mathrm {csgn}\left (i x \right )^{2}-2 \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )+\mathrm {csgn}\left (i x^{2}\right )^{2}\right )}{4}\right )+\ln \left (\ln \left ({\mathrm e}^{4 x}+1\right )+2 x \right )\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 18, normalized size = 0.82 \begin {gather*} \log \left (2 \, x + \log \left (e^{\left (4 \, x\right )} + 1\right )\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.90, size = 20, normalized size = 0.91 \begin {gather*} \ln \left (2\,x+\ln \left ({\mathrm {e}}^{4\,x}+1\right )\right )-\ln \left (\ln \left (x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 19, normalized size = 0.86 \begin {gather*} \log {\left (2 x + \log {\left (e^{4 x} + 1 \right )} \right )} - \log {\left (\log {\left (x^{2} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________