Optimal. Leaf size=27 \[ \left (x+x^2-e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^2\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 7.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (2 x+6 x^2+4 x^3+e^{\frac {8 \left (5 e^x-5 \log (x)\right )}{x}} \left (-40 x^2+4 x^3+e^x \left (-40 x^2+40 x^3\right )+40 x^2 \log (x)\right )+e^{\frac {4 \left (5 e^x-5 \log (x)\right )}{x}} \left (40 x+34 x^2-8 x^3+e^x \left (40 x-40 x^3\right )+\left (-40 x-40 x^2\right ) \log (x)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^2+2 x^3+x^4+\int e^{\frac {8 \left (5 e^x-5 \log (x)\right )}{x}} \left (-40 x^2+4 x^3+e^x \left (-40 x^2+40 x^3\right )+40 x^2 \log (x)\right ) \, dx+\int e^{\frac {4 \left (5 e^x-5 \log (x)\right )}{x}} \left (40 x+34 x^2-8 x^3+e^x \left (40 x-40 x^3\right )+\left (-40 x-40 x^2\right ) \log (x)\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}+\int 2 e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (20+20 e^x+17 x-4 x^2-20 e^x x^2-20 \log (x)-20 x \log (x)\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}+2 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (20+20 e^x+17 x-4 x^2-20 e^x x^2-20 \log (x)-20 x \log (x)\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}+2 \int \left (-20 e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (-1+x^2\right )-e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (-20-17 x+4 x^2+20 \log (x)+20 x \log (x)\right )\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}-2 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (-20-17 x+4 x^2+20 \log (x)+20 x \log (x)\right ) \, dx-40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (-1+x^2\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}-2 \int \left (e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (-20-17 x+4 x^2\right )+20 e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x (1+x) \log (x)\right ) \, dx-40 \int \left (-e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x+e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x^3\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}-2 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \left (-20-17 x+4 x^2\right ) \, dx+40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x \, dx-40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x^3 \, dx-40 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x (1+x) \log (x) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}-2 \int \left (-20 e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x-17 e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^2+4 e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^3\right ) \, dx+40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x \, dx-40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x^3 \, dx-40 \int \left (e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \log (x)+e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^2 \log (x)\right ) \, dx\\ &=x^2+2 x^3+x^4-\frac {e^{\frac {40 e^x}{x}} x^{-40/x} \left (x^2+e^x \left (x^2-x^3\right )-x^2 \log (x)\right )}{\frac {e^x-\frac {1}{x}}{x}-\frac {e^x-\log (x)}{x^2}}-8 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^3 \, dx+34 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^2 \, dx+40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x \, dx+40 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \, dx-40 \int e^{x+\frac {20 \left (e^x-\log (x)\right )}{x}} x^3 \, dx-40 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x \log (x) \, dx-40 \int e^{\frac {20 \left (e^x-\log (x)\right )}{x}} x^2 \log (x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.76, size = 57, normalized size = 2.11 \begin {gather*} -2 e^{\frac {20 e^x}{x}} x^{3-\frac {20}{x}} (1+x)+x^2 \left (1+2 x+x^2+e^{\frac {40 e^x}{x}} x^{2-\frac {40}{x}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 51, normalized size = 1.89 \begin {gather*} x^{4} e^{\left (\frac {40 \, {\left (e^{x} - \log \relax (x)\right )}}{x}\right )} + x^{4} + 2 \, x^{3} + x^{2} - 2 \, {\left (x^{4} + x^{3}\right )} e^{\left (\frac {20 \, {\left (e^{x} - \log \relax (x)\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 65, normalized size = 2.41 \begin {gather*} x^{4} e^{\left (\frac {40 \, {\left (e^{x} - \log \relax (x)\right )}}{x}\right )} - 2 \, x^{4} e^{\left (\frac {20 \, {\left (e^{x} - \log \relax (x)\right )}}{x}\right )} + x^{4} - 2 \, x^{3} e^{\left (\frac {20 \, {\left (e^{x} - \log \relax (x)\right )}}{x}\right )} + 2 \, x^{3} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 51, normalized size = 1.89
method | result | size |
risch | \(x^{4} {\mathrm e}^{\frac {40 \,{\mathrm e}^{x}-40 \ln \relax (x )}{x}}-2 x^{3} \left (x +1\right ) {\mathrm e}^{\frac {-20 \ln \relax (x )+20 \,{\mathrm e}^{x}}{x}}+x^{4}+2 x^{3}+x^{2}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 57, normalized size = 2.11 \begin {gather*} x^{4} e^{\left (\frac {40 \, e^{x}}{x} - \frac {40 \, \log \relax (x)}{x}\right )} + x^{4} + 2 \, x^{3} + x^{2} - 2 \, {\left (x^{4} + x^{3}\right )} e^{\left (\frac {20 \, e^{x}}{x} - \frac {20 \, \log \relax (x)}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.20, size = 63, normalized size = 2.33 \begin {gather*} x^2+2\,x^3+x^4-\frac {{\mathrm {e}}^{\frac {20\,{\mathrm {e}}^x}{x}}\,\left (2\,x^4+2\,x^3\right )}{x^{20/x}}+\frac {x^4\,{\mathrm {e}}^{\frac {40\,{\mathrm {e}}^x}{x}}}{x^{40/x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 53, normalized size = 1.96 \begin {gather*} x^{4} e^{\frac {8 \left (5 e^{x} - 5 \log {\relax (x )}\right )}{x}} + x^{4} + 2 x^{3} + x^{2} + \left (- 2 x^{4} - 2 x^{3}\right ) e^{\frac {4 \left (5 e^{x} - 5 \log {\relax (x )}\right )}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________