Optimal. Leaf size=16 \[ e^{x^2}-\frac {(-2+x) x}{\log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.38, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 2209} \begin {gather*} e^{x^2}-\frac {x^2}{\log (4)}+\frac {2 x}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (2-2 x+2 e^{x^2} x \log (4)\right ) \, dx}{\log (4)}\\ &=\frac {2 x}{\log (4)}-\frac {x^2}{\log (4)}+2 \int e^{x^2} x \, dx\\ &=e^{x^2}+\frac {2 x}{\log (4)}-\frac {x^2}{\log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 1.56 \begin {gather*} \frac {2 x-x^2+\frac {1}{2} e^{x^2} \log (16)}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 1.31 \begin {gather*} -\frac {x^{2} - 2 \, e^{\left (x^{2}\right )} \log \relax (2) - 2 \, x}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.31 \begin {gather*} -\frac {x^{2} - 2 \, e^{\left (x^{2}\right )} \log \relax (2) - 2 \, x}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.25
method | result | size |
default | \(\frac {x -\frac {x^{2}}{2}+\ln \relax (2) {\mathrm e}^{x^{2}}}{\ln \relax (2)}\) | \(20\) |
norman | \(\frac {x}{\ln \relax (2)}-\frac {x^{2}}{2 \ln \relax (2)}+{\mathrm e}^{x^{2}}\) | \(21\) |
risch | \(\frac {x}{\ln \relax (2)}-\frac {x^{2}}{2 \ln \relax (2)}+{\mathrm e}^{x^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 21, normalized size = 1.31 \begin {gather*} -\frac {x^{2} - 2 \, e^{\left (x^{2}\right )} \log \relax (2) - 2 \, x}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 23, normalized size = 1.44 \begin {gather*} \frac {2\,x+2\,{\mathrm {e}}^{x^2}\,\ln \relax (2)-x^2}{2\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 1.06 \begin {gather*} - \frac {x^{2}}{2 \log {\relax (2 )}} + \frac {x}{\log {\relax (2 )}} + e^{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________