Optimal. Leaf size=27 \[ \frac {\left (5+e^{e^x}\right ) x \log \left (x^2\right )}{3+\frac {3 x^2}{1+x}} \]
________________________________________________________________________________________
Rubi [F] time = 4.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10+20 x+20 x^2+10 x^3+(5+10 x) \log \left (x^2\right )+e^{e^x} \left (2+4 x+4 x^2+2 x^3+\left (1+2 x+e^x \left (x+2 x^2+2 x^3+x^4\right )\right ) \log \left (x^2\right )\right )}{3+6 x+9 x^2+6 x^3+3 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {10}{3 \left (1+x+x^2\right )^2}+\frac {2 e^{e^x}}{3 \left (1+x+x^2\right )^2}+\frac {20 x}{3 \left (1+x+x^2\right )^2}+\frac {4 e^{e^x} x}{3 \left (1+x+x^2\right )^2}+\frac {20 x^2}{3 \left (1+x+x^2\right )^2}+\frac {4 e^{e^x} x^2}{3 \left (1+x+x^2\right )^2}+\frac {10 x^3}{3 \left (1+x+x^2\right )^2}+\frac {2 e^{e^x} x^3}{3 \left (1+x+x^2\right )^2}+\frac {e^{e^x} \log \left (x^2\right )}{3 \left (1+x+x^2\right )^2}+\frac {2 e^{e^x} x \log \left (x^2\right )}{3 \left (1+x+x^2\right )^2}+\frac {5 (1+2 x) \log \left (x^2\right )}{3 \left (1+x+x^2\right )^2}+\frac {e^{e^x+x} x (1+x) \log \left (x^2\right )}{3 \left (1+x+x^2\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{e^x} \log \left (x^2\right )}{\left (1+x+x^2\right )^2} \, dx+\frac {1}{3} \int \frac {e^{e^x+x} x (1+x) \log \left (x^2\right )}{1+x+x^2} \, dx+\frac {2}{3} \int \frac {e^{e^x}}{\left (1+x+x^2\right )^2} \, dx+\frac {2}{3} \int \frac {e^{e^x} x^3}{\left (1+x+x^2\right )^2} \, dx+\frac {2}{3} \int \frac {e^{e^x} x \log \left (x^2\right )}{\left (1+x+x^2\right )^2} \, dx+\frac {4}{3} \int \frac {e^{e^x} x}{\left (1+x+x^2\right )^2} \, dx+\frac {4}{3} \int \frac {e^{e^x} x^2}{\left (1+x+x^2\right )^2} \, dx+\frac {5}{3} \int \frac {(1+2 x) \log \left (x^2\right )}{\left (1+x+x^2\right )^2} \, dx+\frac {10}{3} \int \frac {1}{\left (1+x+x^2\right )^2} \, dx+\frac {10}{3} \int \frac {x^3}{\left (1+x+x^2\right )^2} \, dx+\frac {20}{3} \int \frac {x}{\left (1+x+x^2\right )^2} \, dx+\frac {20}{3} \int \frac {x^2}{\left (1+x+x^2\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.13, size = 34, normalized size = 1.26 \begin {gather*} \frac {1}{3} \left (10 \log (x)+\frac {\left (-5+e^{e^x} x (1+x)\right ) \log \left (x^2\right )}{1+x+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 35, normalized size = 1.30 \begin {gather*} \frac {{\left (x^{2} + x\right )} e^{\left (e^{x}\right )} \log \left (x^{2}\right ) + 5 \, {\left (x^{2} + x\right )} \log \left (x^{2}\right )}{3 \, {\left (x^{2} + x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {10 \, x^{3} + 20 \, x^{2} + {\left (2 \, x^{3} + 4 \, x^{2} + {\left ({\left (x^{4} + 2 \, x^{3} + 2 \, x^{2} + x\right )} e^{x} + 2 \, x + 1\right )} \log \left (x^{2}\right ) + 4 \, x + 2\right )} e^{\left (e^{x}\right )} + 5 \, {\left (2 \, x + 1\right )} \log \left (x^{2}\right ) + 20 \, x + 10}{3 \, {\left (x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 215, normalized size = 7.96
method | result | size |
risch | \(-\frac {10 \ln \relax (x )}{3 \left (x^{2}+x +1\right )}+\frac {\frac {5 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{6}-\frac {5 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}}{3}+\frac {5 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{6}+\frac {10 x^{2} \ln \relax (x )}{3}+\frac {10 x \ln \relax (x )}{3}+\frac {10 \ln \relax (x )}{3}}{x^{2}+x +1}+\frac {x \left (-i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 x \ln \relax (x )+4 \ln \relax (x )\right ) {\mathrm e}^{{\mathrm e}^{x}}}{6 x^{2}+6 x +6}\) | \(215\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 73, normalized size = 2.70 \begin {gather*} \frac {2 \, {\left ({\left (x^{2} + x\right )} e^{\left (e^{x}\right )} \log \relax (x) + 5 \, {\left (x^{2} + x\right )} \log \relax (x)\right )}}{3 \, {\left (x^{2} + x + 1\right )}} + \frac {20 \, {\left (2 \, x + 1\right )}}{9 \, {\left (x^{2} + x + 1\right )}} - \frac {20 \, {\left (x + 2\right )}}{9 \, {\left (x^{2} + x + 1\right )}} - \frac {20 \, {\left (x - 1\right )}}{9 \, {\left (x^{2} + x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {20\,x+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (4\,x+\ln \left (x^2\right )\,\left (2\,x+{\mathrm {e}}^x\,\left (x^4+2\,x^3+2\,x^2+x\right )+1\right )+4\,x^2+2\,x^3+2\right )+20\,x^2+10\,x^3+\ln \left (x^2\right )\,\left (10\,x+5\right )+10}{3\,x^4+6\,x^3+9\,x^2+6\,x+3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.48, size = 53, normalized size = 1.96 \begin {gather*} \frac {\left (x^{2} \log {\left (x^{2} \right )} + x \log {\left (x^{2} \right )}\right ) e^{e^{x}}}{3 x^{2} + 3 x + 3} + \frac {10 \log {\relax (x )}}{3} - \frac {5 \log {\left (x^{2} \right )}}{3 x^{2} + 3 x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________