Optimal. Leaf size=28 \[ -\frac {3}{2}+e^x+x+\frac {1}{4} \left (\frac {3}{x}+\left (-e^x+x\right ) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 35, normalized size of antiderivative = 1.25, number of steps used = 9, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {12, 14, 2288, 2295} \begin {gather*} x+\frac {3}{4 x}+\frac {1}{4} x \log (x)+\frac {e^x (4 x-x \log (x))}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-3+5 x^2+e^x \left (-x+4 x^2\right )+\left (x^2-e^x x^2\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^x (1-4 x+x \log (x))}{x}+\frac {-3+5 x^2+x^2 \log (x)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^x (1-4 x+x \log (x))}{x} \, dx\right )+\frac {1}{4} \int \frac {-3+5 x^2+x^2 \log (x)}{x^2} \, dx\\ &=\frac {e^x (4 x-x \log (x))}{4 x}+\frac {1}{4} \int \left (\frac {-3+5 x^2}{x^2}+\log (x)\right ) \, dx\\ &=\frac {e^x (4 x-x \log (x))}{4 x}+\frac {1}{4} \int \frac {-3+5 x^2}{x^2} \, dx+\frac {1}{4} \int \log (x) \, dx\\ &=-\frac {x}{4}+\frac {1}{4} x \log (x)+\frac {e^x (4 x-x \log (x))}{4 x}+\frac {1}{4} \int \left (5-\frac {3}{x^2}\right ) \, dx\\ &=\frac {3}{4 x}+x+\frac {1}{4} x \log (x)+\frac {e^x (4 x-x \log (x))}{4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 29, normalized size = 1.04 \begin {gather*} \frac {1}{4} \left (4 e^x+\frac {3}{x}+4 x-e^x \log (x)+x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 29, normalized size = 1.04 \begin {gather*} \frac {4 \, x^{2} + 4 \, x e^{x} + {\left (x^{2} - x e^{x}\right )} \log \relax (x) + 3}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 30, normalized size = 1.07 \begin {gather*} \frac {x^{2} \log \relax (x) - x e^{x} \log \relax (x) + 4 \, x^{2} + 4 \, x e^{x} + 3}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.75
method | result | size |
default | \(-\frac {{\mathrm e}^{x} \ln \relax (x )}{4}+{\mathrm e}^{x}+x +\frac {3}{4 x}+\frac {x \ln \relax (x )}{4}\) | \(21\) |
norman | \(\frac {\frac {3}{4}+x^{2}+{\mathrm e}^{x} x +\frac {x^{2} \ln \relax (x )}{4}-\frac {x \,{\mathrm e}^{x} \ln \relax (x )}{4}}{x}\) | \(28\) |
risch | \(\frac {\left (x -{\mathrm e}^{x}\right ) \ln \relax (x )}{4}+\frac {4 x^{2}+4 \,{\mathrm e}^{x} x +3}{4 x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 20, normalized size = 0.71 \begin {gather*} \frac {1}{4} \, x \log \relax (x) - \frac {1}{4} \, e^{x} \log \relax (x) + x + \frac {3}{4 \, x} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.72, size = 22, normalized size = 0.79 \begin {gather*} {\mathrm {e}}^x-\frac {{\mathrm {e}}^x\,\ln \relax (x)}{4}+x\,\left (\frac {\ln \relax (x)}{4}+1\right )+\frac {3}{4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 22, normalized size = 0.79 \begin {gather*} \frac {x \log {\relax (x )}}{4} + x + \frac {\left (4 - \log {\relax (x )}\right ) e^{x}}{4} + \frac {3}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________