Optimal. Leaf size=24 \[ 5-e^{x+\frac {1}{3} \left (-2 x-e^x \log (x)\right )}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 4, number of rules used = 3, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {12, 14, 2288} \begin {gather*} x-e^{x/3} x^{\frac {1}{3} \left (-e^x-3\right )+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {3 x+e^{\frac {1}{3} \left (x-e^x \log (x)\right )} \left (e^x-x+e^x x \log (x)\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (3+e^{x/3} x^{\frac {1}{3} \left (-3-e^x\right )} \left (e^x-x+e^x x \log (x)\right )\right ) \, dx\\ &=x+\frac {1}{3} \int e^{x/3} x^{\frac {1}{3} \left (-3-e^x\right )} \left (e^x-x+e^x x \log (x)\right ) \, dx\\ &=x-e^{x/3} x^{1+\frac {1}{3} \left (-3-e^x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 20, normalized size = 0.83 \begin {gather*} x-e^{x/3} x^{-\frac {e^x}{3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 15, normalized size = 0.62 \begin {gather*} x - e^{\left (-\frac {1}{3} \, e^{x} \log \relax (x) + \frac {1}{3} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x e^{x} \log \relax (x) - x + e^{x}\right )} e^{\left (-\frac {1}{3} \, e^{x} \log \relax (x) + \frac {1}{3} \, x\right )} + 3 \, x}{3 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 15, normalized size = 0.62
method | result | size |
risch | \(x -x^{-\frac {{\mathrm e}^{x}}{3}} {\mathrm e}^{\frac {x}{3}}\) | \(15\) |
norman | \(x -{\mathrm e}^{-\frac {{\mathrm e}^{x} \ln \relax (x )}{3}+\frac {x}{3}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x + \frac {1}{3} \, \int \frac {{\left (x \log \relax (x) + 1\right )} e^{\left (\frac {4}{3} \, x\right )} - x e^{\left (\frac {1}{3} \, x\right )}}{x x^{\frac {1}{3} \, e^{x}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 15, normalized size = 0.62 \begin {gather*} x-{\mathrm {e}}^{\frac {x}{3}-\frac {{\mathrm {e}}^x\,\ln \relax (x)}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 14, normalized size = 0.58 \begin {gather*} x - e^{\frac {x}{3} - \frac {e^{x} \log {\relax (x )}}{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________