Optimal. Leaf size=31 \[ \frac {5}{(-2+x) x}-\frac {e (-3-x) x}{5-\frac {1}{4} x \log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 47, normalized size of antiderivative = 1.52, number of steps used = 2, number of rules used = 1, integrand size = 131, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {2074} \begin {gather*} -\frac {5}{2 (2-x)}-\frac {5}{2 x}+\frac {80 e (20+\log (64))}{\log ^2(4) (20-x \log (4))}-\frac {4 e x}{\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5}{2 (-2+x)^2}+\frac {5}{2 x^2}-\frac {4 e}{\log (4)}+\frac {80 e (20+\log (64))}{\log (4) (-20+x \log (4))^2}\right ) \, dx\\ &=-\frac {5}{2 (2-x)}-\frac {5}{2 x}-\frac {4 e x}{\log (4)}+\frac {80 e (20+\log (64))}{\log ^2(4) (20-x \log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 79, normalized size = 2.55 \begin {gather*} -2 \left (\frac {5}{4 x}+\frac {e x \log (16)}{\log ^2(4)}+5 \left (\frac {1}{8-4 x}+\frac {8 e \left (-500 \log ^2(4)-40 \log ^3(4)+3 \log ^4(4)+1000 \log (16)+200 \log (4) \log (16)\right )}{(-10+\log (4))^2 \log ^3(4) (-20+x \log (4))}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.15, size = 88, normalized size = 2.84 \begin {gather*} \frac {5 \, x \log \relax (2)^{3} + 20 \, {\left (x^{3} - 5 \, x^{2} + 6 \, x\right )} e \log \relax (2) - 2 \, {\left ({\left (x^{4} - 2 \, x^{3}\right )} e + 25\right )} \log \relax (2)^{2} - 200 \, {\left (x^{2} - 2 \, x\right )} e}{{\left (x^{3} - 2 \, x^{2}\right )} \log \relax (2)^{3} - 10 \, {\left (x^{2} - 2 \, x\right )} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 82, normalized size = 2.65 \begin {gather*} -\frac {2 \, x e}{\log \relax (2)} - \frac {5 \, {\left (12 \, x^{2} e \log \relax (2) - x \log \relax (2)^{3} + 40 \, x^{2} e - 24 \, x e \log \relax (2) - 80 \, x e + 10 \, \log \relax (2)^{2}\right )}}{{\left (x^{3} \log \relax (2) - 2 \, x^{2} \log \relax (2) - 10 \, x^{2} + 20 \, x\right )} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 45, normalized size = 1.45
method | result | size |
default | \(-\frac {2 \,{\mathrm e} x}{\ln \relax (2)}+\frac {5}{2 \left (x -2\right )}-\frac {20 \,{\mathrm e} \left (3 \ln \relax (2)+10\right )}{\ln \relax (2)^{2} \left (x \ln \relax (2)-10\right )}-\frac {5}{2 x}\) | \(45\) |
norman | \(\frac {-50+\left (-\frac {\ln \relax (2)^{2}}{4}-2 \,{\mathrm e}\right ) x^{3}+\left (\frac {\ln \relax (2)^{2}}{2}+12 \,{\mathrm e}+\frac {5 \ln \relax (2)}{2}\right ) x^{2}-2 x^{4} {\mathrm e}}{x \left (x -2\right ) \left (x \ln \relax (2)-10\right )}\) | \(61\) |
gosper | \(-\frac {8 x^{4} {\mathrm e}+x^{3} \ln \relax (2)^{2}+8 x^{3} {\mathrm e}-2 x^{2} \ln \relax (2)^{2}-48 x^{2} {\mathrm e}-10 x^{2} \ln \relax (2)+200}{4 x \left (x^{2} \ln \relax (2)-2 x \ln \relax (2)-10 x +20\right )}\) | \(71\) |
risch | \(-\frac {2 \,{\mathrm e} x}{\ln \relax (2)}+\frac {-\frac {20 \,{\mathrm e} \left (3 \ln \relax (2)+10\right ) x^{2}}{\ln \relax (2)}+\frac {5 \left (\ln \relax (2)^{3}+24 \,{\mathrm e} \ln \relax (2)+80 \,{\mathrm e}\right ) x}{\ln \relax (2)}-50 \ln \relax (2)}{\ln \relax (2) x \left (x^{2} \ln \relax (2)-2 x \ln \relax (2)-10 x +20\right )}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 87, normalized size = 2.81 \begin {gather*} -\frac {2 \, x e}{\log \relax (2)} - \frac {5 \, {\left (4 \, {\left (3 \, e \log \relax (2) + 10 \, e\right )} x^{2} - {\left (\log \relax (2)^{3} + 24 \, e \log \relax (2) + 80 \, e\right )} x + 10 \, \log \relax (2)^{2}\right )}}{x^{3} \log \relax (2)^{3} - 2 \, {\left (\log \relax (2)^{3} + 5 \, \log \relax (2)^{2}\right )} x^{2} + 20 \, x \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.09, size = 91, normalized size = 2.94 \begin {gather*} -\frac {\frac {20\,\left (10\,\mathrm {e}+3\,\mathrm {e}\,\ln \relax (2)\right )\,x^2}{\ln \relax (2)}-\frac {5\,\left (80\,\mathrm {e}+24\,\mathrm {e}\,\ln \relax (2)+{\ln \relax (2)}^3\right )\,x}{\ln \relax (2)}+50\,\ln \relax (2)}{{\ln \relax (2)}^2\,x^3+\left (-10\,\ln \relax (2)-2\,{\ln \relax (2)}^2\right )\,x^2+20\,\ln \relax (2)\,x}-\frac {2\,x\,\mathrm {e}}{\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.63, size = 94, normalized size = 3.03 \begin {gather*} - \frac {2 e x}{\log {\relax (2 )}} - \frac {x^{2} \left (60 e \log {\relax (2 )} + 200 e\right ) + x \left (- 400 e - 120 e \log {\relax (2 )} - 5 \log {\relax (2 )}^{3}\right ) + 50 \log {\relax (2 )}^{2}}{x^{3} \log {\relax (2 )}^{3} + x^{2} \left (- 10 \log {\relax (2 )}^{2} - 2 \log {\relax (2 )}^{3}\right ) + 20 x \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________