Optimal. Leaf size=14 \[ 1+x-\frac {12}{-e^x+x} \]
________________________________________________________________________________________
Rubi [F] time = 0.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12+e^{2 x}+e^x (-12-2 x)+x^2}{e^{2 x}-2 e^x x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12+e^{2 x}+e^x (-12-2 x)+x^2}{\left (e^x-x\right )^2} \, dx\\ &=\int \left (1-\frac {12}{e^x-x}-\frac {12 (-1+x)}{\left (e^x-x\right )^2}\right ) \, dx\\ &=x-12 \int \frac {1}{e^x-x} \, dx-12 \int \frac {-1+x}{\left (e^x-x\right )^2} \, dx\\ &=x-12 \int \frac {1}{e^x-x} \, dx-12 \int \left (-\frac {1}{\left (e^x-x\right )^2}+\frac {x}{\left (e^x-x\right )^2}\right ) \, dx\\ &=x+12 \int \frac {1}{\left (e^x-x\right )^2} \, dx-12 \int \frac {1}{e^x-x} \, dx-12 \int \frac {x}{\left (e^x-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 13, normalized size = 0.93 \begin {gather*} \frac {12}{e^x-x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 19, normalized size = 1.36 \begin {gather*} \frac {x^{2} - x e^{x} - 12}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 19, normalized size = 1.36 \begin {gather*} \frac {x^{2} - x e^{x} - 12}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 13, normalized size = 0.93
method | result | size |
risch | \(x -\frac {12}{x -{\mathrm e}^{x}}\) | \(13\) |
norman | \(\frac {-12+x^{2}-{\mathrm e}^{x} x}{x -{\mathrm e}^{x}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 19, normalized size = 1.36 \begin {gather*} \frac {x^{2} - x e^{x} - 12}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 12, normalized size = 0.86 \begin {gather*} x-\frac {12}{x-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 7, normalized size = 0.50 \begin {gather*} x + \frac {12}{- x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________