Optimal. Leaf size=26 \[ \log \left (\frac {2 x^3}{3 \left (2-4 e^{-1-16 x^2} x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 e^{1+16 x^2}-2 x^2-64 x^4}{e^{1+16 x^2} x-2 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3}{x}-\frac {4 x \left (-1+16 x^2\right )}{e^{1+16 x^2}-2 x^2}\right ) \, dx\\ &=3 \log (x)-4 \int \frac {x \left (-1+16 x^2\right )}{e^{1+16 x^2}-2 x^2} \, dx\\ &=3 \log (x)-2 \operatorname {Subst}\left (\int \frac {-1+16 x}{e^{1+16 x}-2 x} \, dx,x,x^2\right )\\ &=3 \log (x)-2 \operatorname {Subst}\left (\int \left (-\frac {1}{e^{1+16 x}-2 x}+\frac {16 x}{e^{1+16 x}-2 x}\right ) \, dx,x,x^2\right )\\ &=3 \log (x)+2 \operatorname {Subst}\left (\int \frac {1}{e^{1+16 x}-2 x} \, dx,x,x^2\right )-32 \operatorname {Subst}\left (\int \frac {x}{e^{1+16 x}-2 x} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 28, normalized size = 1.08 \begin {gather*} 16 x^2+3 \log (x)-\log \left (e^{1+16 x^2}-2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 27, normalized size = 1.04 \begin {gather*} 16 \, x^{2} - \log \left (-2 \, x^{2} + e^{\left (16 \, x^{2} + 1\right )}\right ) + 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 34, normalized size = 1.31 \begin {gather*} 16 \, x^{2} + \frac {3}{2} \, \log \left (16 \, x^{2}\right ) - \log \left (16 \, x^{2} - 8 \, e^{\left (16 \, x^{2} + 1\right )}\right ) + 1 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.12
method | result | size |
risch | \(3 \ln \relax (x )+16 x^{2}+1-\ln \left (-2 x^{2}+{\mathrm e}^{16 x^{2}+1}\right )\) | \(29\) |
norman | \(16 x^{2}+3 \ln \relax (x )-\ln \left (2 x^{2}-{\mathrm e}^{16 x^{2}+1}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 33, normalized size = 1.27 \begin {gather*} 16 \, x^{2} - \log \left (-{\left (2 \, x^{2} - e^{\left (16 \, x^{2} + 1\right )}\right )} e^{\left (-1\right )}\right ) + 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 29, normalized size = 1.12 \begin {gather*} 3\,\ln \relax (x)-\ln \left (2\,x^2-\mathrm {e}\,{\mathrm {e}}^{16\,x^2}\right )+16\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 24, normalized size = 0.92 \begin {gather*} 16 x^{2} + 3 \log {\relax (x )} - \log {\left (- 2 x^{2} + e^{16 x^{2} + 1} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________