Optimal. Leaf size=30 \[ e^{\frac {1}{x}+x-\left (2+x^2-2 e^{-e^{5/3}} x^3\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 1.48, antiderivative size = 69, normalized size of antiderivative = 2.30, number of steps used = 1, number of rules used = 1, integrand size = 130, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {6706} \begin {gather*} \exp \left (-\frac {e^{-2 e^{5/3}} \left (4 x^7-4 e^{e^{5/3}} \left (x^6+2 x^4\right )-e^{2 e^{5/3}} \left (-x^5-4 x^3+x^2-4 x+1\right )\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\exp \left (-\frac {e^{-2 e^{5/3}} \left (4 x^7-e^{2 e^{5/3}} \left (1-4 x+x^2-4 x^3-x^5\right )-4 e^{e^{5/3}} \left (2 x^4+x^6\right )\right )}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 60, normalized size = 2.00 \begin {gather*} e^{-4+\frac {1}{x}+x-4 x^2+8 e^{-e^{5/3}} x^3-x^4+4 e^{-e^{5/3}} x^5-4 e^{-2 e^{5/3}} x^6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 65, normalized size = 2.17 \begin {gather*} e^{\left (-\frac {{\left (4 \, x^{7} + {\left (x^{5} + 4 \, x^{3} - x^{2} + 2 \, x e^{\frac {5}{3}} + 4 \, x - 1\right )} e^{\left (2 \, e^{\frac {5}{3}}\right )} - 4 \, {\left (x^{6} + 2 \, x^{4}\right )} e^{\left (e^{\frac {5}{3}}\right )}\right )} e^{\left (-2 \, e^{\frac {5}{3}}\right )}}{x} + 2 \, e^{\frac {5}{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 47, normalized size = 1.57 \begin {gather*} e^{\left (-4 \, x^{6} e^{\left (-2 \, e^{\frac {5}{3}}\right )} + 4 \, x^{5} e^{\left (-e^{\frac {5}{3}}\right )} - x^{4} + 8 \, x^{3} e^{\left (-e^{\frac {5}{3}}\right )} - 4 \, x^{2} + x + \frac {1}{x} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.44, size = 56, normalized size = 1.87
method | result | size |
norman | \({\mathrm e}^{\frac {\left (\left (-x^{5}-4 x^{3}+x^{2}-4 x +1\right ) {\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}}+\left (4 x^{6}+8 x^{4}\right ) {\mathrm e}^{{\mathrm e}^{\frac {5}{3}}}-4 x^{7}\right ) {\mathrm e}^{-2 \,{\mathrm e}^{\frac {5}{3}}}}{x}}\) | \(56\) |
gosper | \({\mathrm e}^{-\frac {\left (-4 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{3}}} x^{6}+4 x^{7}+{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x^{5}-8 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{3}}} x^{4}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x^{3}-{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x^{2}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x -{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}}\right ) {\mathrm e}^{-2 \,{\mathrm e}^{\frac {5}{3}}}}{x}}\) | \(78\) |
risch | \({\mathrm e}^{-\frac {\left (-4 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{3}}} x^{6}+4 x^{7}+{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x^{5}-8 \,{\mathrm e}^{{\mathrm e}^{\frac {5}{3}}} x^{4}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x^{3}-{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x^{2}+4 \,{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}} x -{\mathrm e}^{2 \,{\mathrm e}^{\frac {5}{3}}}\right ) {\mathrm e}^{-2 \,{\mathrm e}^{\frac {5}{3}}}}{x}}\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 47, normalized size = 1.57 \begin {gather*} e^{\left (-4 \, x^{6} e^{\left (-2 \, e^{\frac {5}{3}}\right )} + 4 \, x^{5} e^{\left (-e^{\frac {5}{3}}\right )} - x^{4} + 8 \, x^{3} e^{\left (-e^{\frac {5}{3}}\right )} - 4 \, x^{2} + x + \frac {1}{x} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.60, size = 54, normalized size = 1.80 \begin {gather*} {\mathrm {e}}^{1/x}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{-x^4}\,{\mathrm {e}}^{-4\,x^2}\,{\mathrm {e}}^{4\,x^5\,{\mathrm {e}}^{-{\mathrm {e}}^{5/3}}}\,{\mathrm {e}}^{8\,x^3\,{\mathrm {e}}^{-{\mathrm {e}}^{5/3}}}\,{\mathrm {e}}^{-4\,x^6\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{5/3}}}\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 58, normalized size = 1.93 \begin {gather*} e^{\frac {- 4 x^{7} + \left (4 x^{6} + 8 x^{4}\right ) e^{e^{\frac {5}{3}}} + \left (- x^{5} - 4 x^{3} + x^{2} - 4 x + 1\right ) e^{2 e^{\frac {5}{3}}}}{x e^{2 e^{\frac {5}{3}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________