Optimal. Leaf size=29 \[ e^{-1-e^x} \left (-\frac {15 x}{16}+\frac {e^x}{x+e^2 x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-1-e^x} \left (-16 e^{2 x} x-15 x^2-15 e^2 x^2+e^x \left (-16+16 x+15 x^3+15 e^2 x^3\right )\right )}{16 x^2+16 e^2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1-e^x} \left (-16 e^{2 x} x-15 x^2-15 e^2 x^2+e^x \left (-16+16 x+15 x^3+15 e^2 x^3\right )\right )}{\left (16+16 e^2\right ) x^2} \, dx\\ &=\int \frac {e^{-1-e^x} \left (-16 e^{2 x} x+\left (-15-15 e^2\right ) x^2+e^x \left (-16+16 x+15 x^3+15 e^2 x^3\right )\right )}{\left (16+16 e^2\right ) x^2} \, dx\\ &=\frac {\int \frac {e^{-1-e^x} \left (-16 e^{2 x} x+\left (-15-15 e^2\right ) x^2+e^x \left (-16+16 x+15 x^3+15 e^2 x^3\right )\right )}{x^2} \, dx}{16 \left (1+e^2\right )}\\ &=\frac {\int \left (-15 e^{-1-e^x} \left (1+e^2\right )-\frac {16 e^{-1-e^x+2 x}}{x}+\frac {e^{-1-e^x+x} \left (-16+16 x+15 \left (1+e^2\right ) x^3\right )}{x^2}\right ) \, dx}{16 \left (1+e^2\right )}\\ &=-\left (\frac {15}{16} \int e^{-1-e^x} \, dx\right )+\frac {\int \frac {e^{-1-e^x+x} \left (-16+16 x+15 \left (1+e^2\right ) x^3\right )}{x^2} \, dx}{16 \left (1+e^2\right )}-\frac {\int \frac {e^{-1-e^x+2 x}}{x} \, dx}{1+e^2}\\ &=-\left (\frac {15}{16} \operatorname {Subst}\left (\int \frac {e^{-1-x}}{x} \, dx,x,e^x\right )\right )+\frac {\int \left (-\frac {16 e^{-1-e^x+x}}{x^2}+\frac {16 e^{-1-e^x+x}}{x}+15 e^{-1-e^x+x} \left (1+e^2\right ) x\right ) \, dx}{16 \left (1+e^2\right )}-\frac {\int \frac {e^{-1-e^x+2 x}}{x} \, dx}{1+e^2}\\ &=-\frac {15 \text {Ei}\left (-e^x\right )}{16 e}+\frac {15}{16} \int e^{-1-e^x+x} x \, dx-\frac {\int \frac {e^{-1-e^x+x}}{x^2} \, dx}{1+e^2}+\frac {\int \frac {e^{-1-e^x+x}}{x} \, dx}{1+e^2}-\frac {\int \frac {e^{-1-e^x+2 x}}{x} \, dx}{1+e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 40, normalized size = 1.38 \begin {gather*} \frac {e^{-e^x} \left (\frac {16 e^{-1+x}}{x}-\frac {15 \left (1+e^2\right ) x}{e}\right )}{16 \left (1+e^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 34, normalized size = 1.17 \begin {gather*} -\frac {{\left (15 \, x^{2} e^{2} + 15 \, x^{2} - 16 \, e^{x}\right )} e^{\left (-e^{x} - 1\right )}}{16 \, {\left (x e^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (15 \, x^{2} e^{2} + 15 \, x^{2} + 16 \, x e^{\left (2 \, x\right )} - {\left (15 \, x^{3} e^{2} + 15 \, x^{3} + 16 \, x - 16\right )} e^{x}\right )} e^{\left (-e^{x} - 1\right )}}{16 \, {\left (x^{2} e^{2} + x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 27, normalized size = 0.93
method | result | size |
norman | \(\frac {\left (\frac {{\mathrm e}^{x}}{{\mathrm e}^{2}+1}-\frac {15 x^{2}}{16}\right ) {\mathrm e}^{-{\mathrm e}^{x}-1}}{x}\) | \(27\) |
risch | \(-\frac {\left (15 x^{2} {\mathrm e}^{2}+15 x^{2}-16 \,{\mathrm e}^{x}\right ) {\mathrm e}^{-{\mathrm e}^{x}-1}}{16 x \left ({\mathrm e}^{2}+1\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 31, normalized size = 1.07 \begin {gather*} -\frac {{\left (15 \, x^{2} {\left (e^{2} + 1\right )} - 16 \, e^{x}\right )} e^{\left (-e^{x}\right )}}{16 \, x {\left (e^{3} + e\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.93, size = 37, normalized size = 1.28 \begin {gather*} \frac {{\mathrm {e}}^{x-{\mathrm {e}}^x-1}-\frac {x^2\,{\mathrm {e}}^{-{\mathrm {e}}^x-1}\,\left (15\,{\mathrm {e}}^2+15\right )}{16}}{x\,\left ({\mathrm {e}}^2+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 36, normalized size = 1.24 \begin {gather*} \frac {\left (- 15 x^{2} e^{2} - 15 x^{2} + 16 e^{x}\right ) e^{- e^{x} - 1}}{16 x + 16 x e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________