Optimal. Leaf size=18 \[ e^x \left (-x-x^2+\log (3) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 23, normalized size of antiderivative = 1.28, number of steps used = 11, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {14, 2194, 2176, 2178, 2554} \begin {gather*} -e^x x^2-e^x x+e^x \log (3) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^x-3 e^x x-e^x x^2+\frac {e^x \log (3)}{x}+e^x \log (3) \log (x)\right ) \, dx\\ &=-\left (3 \int e^x x \, dx\right )+\log (3) \int \frac {e^x}{x} \, dx+\log (3) \int e^x \log (x) \, dx-\int e^x \, dx-\int e^x x^2 \, dx\\ &=-e^x-3 e^x x-e^x x^2+\text {Ei}(x) \log (3)+e^x \log (3) \log (x)+2 \int e^x x \, dx+3 \int e^x \, dx-\log (3) \int \frac {e^x}{x} \, dx\\ &=2 e^x-e^x x-e^x x^2+e^x \log (3) \log (x)-2 \int e^x \, dx\\ &=-e^x x-e^x x^2+e^x \log (3) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 16, normalized size = 0.89 \begin {gather*} -e^x \left (x+x^2-\log (3) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 17, normalized size = 0.94 \begin {gather*} e^{x} \log \relax (3) \log \relax (x) - {\left (x^{2} + x\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.93, size = 20, normalized size = 1.11 \begin {gather*} -x^{2} e^{x} + e^{x} \log \relax (3) \log \relax (x) - x e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 17, normalized size = 0.94
method | result | size |
risch | \(\ln \relax (3) {\mathrm e}^{x} \ln \relax (x )-x \left (x +1\right ) {\mathrm e}^{x}\) | \(17\) |
norman | \(\ln \relax (3) {\mathrm e}^{x} \ln \relax (x )-{\mathrm e}^{x} x -{\mathrm e}^{x} x^{2}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 31, normalized size = 1.72 \begin {gather*} e^{x} \log \relax (3) \log \relax (x) - {\left (x^{2} - 2 \, x + 2\right )} e^{x} - 3 \, {\left (x - 1\right )} e^{x} - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.70, size = 15, normalized size = 0.83 \begin {gather*} -{\mathrm {e}}^x\,\left (x-\ln \relax (3)\,\ln \relax (x)+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 14, normalized size = 0.78 \begin {gather*} \left (- x^{2} - x + \log {\relax (3 )} \log {\relax (x )}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________