Optimal. Leaf size=34 \[ x^2 \left (7-x-e^x x \left (\frac {e^{x \left (-3+\frac {2}{4+x}\right )}}{x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {224 x+64 x^2-10 x^3-3 x^4+e^x \left (-64 x^3-48 x^4-12 x^5-x^6+e^{\frac {-10 x-3 x^2}{4+x}} \left (-32 x+8 x^2+14 x^3+2 x^4\right )\right )}{16+8 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {224 x+64 x^2-10 x^3-3 x^4+e^x \left (-64 x^3-48 x^4-12 x^5-x^6+e^{\frac {-10 x-3 x^2}{4+x}} \left (-32 x+8 x^2+14 x^3+2 x^4\right )\right )}{(4+x)^2} \, dx\\ &=\int \left (\frac {224 x}{(4+x)^2}+\frac {64 x^2}{(4+x)^2}-\frac {10 x^3}{(4+x)^2}-\frac {64 e^x x^3}{(4+x)^2}-\frac {3 x^4}{(4+x)^2}-\frac {48 e^x x^4}{(4+x)^2}-\frac {12 e^x x^5}{(4+x)^2}-\frac {e^x x^6}{(4+x)^2}+\frac {2 e^{-\frac {2 x (3+x)}{4+x}} x \left (-16+4 x+7 x^2+x^3\right )}{(4+x)^2}\right ) \, dx\\ &=2 \int \frac {e^{-\frac {2 x (3+x)}{4+x}} x \left (-16+4 x+7 x^2+x^3\right )}{(4+x)^2} \, dx-3 \int \frac {x^4}{(4+x)^2} \, dx-10 \int \frac {x^3}{(4+x)^2} \, dx-12 \int \frac {e^x x^5}{(4+x)^2} \, dx-48 \int \frac {e^x x^4}{(4+x)^2} \, dx+64 \int \frac {x^2}{(4+x)^2} \, dx-64 \int \frac {e^x x^3}{(4+x)^2} \, dx+224 \int \frac {x}{(4+x)^2} \, dx-\int \frac {e^x x^6}{(4+x)^2} \, dx\\ &=2 \int \left (-4 e^{-\frac {2 x (3+x)}{4+x}}-e^{-\frac {2 x (3+x)}{4+x}} x+e^{-\frac {2 x (3+x)}{4+x}} x^2-\frac {64 e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2}+\frac {32 e^{-\frac {2 x (3+x)}{4+x}}}{4+x}\right ) \, dx-3 \int \left (48-8 x+x^2+\frac {256}{(4+x)^2}-\frac {256}{4+x}\right ) \, dx-10 \int \left (-8+x-\frac {64}{(4+x)^2}+\frac {48}{4+x}\right ) \, dx-12 \int \left (-256 e^x+48 e^x x-8 e^x x^2+e^x x^3-\frac {1024 e^x}{(4+x)^2}+\frac {1280 e^x}{4+x}\right ) \, dx-48 \int \left (48 e^x-8 e^x x+e^x x^2+\frac {256 e^x}{(4+x)^2}-\frac {256 e^x}{4+x}\right ) \, dx+64 \int \left (1+\frac {16}{(4+x)^2}-\frac {8}{4+x}\right ) \, dx-64 \int \left (-8 e^x+e^x x-\frac {64 e^x}{(4+x)^2}+\frac {48 e^x}{4+x}\right ) \, dx+224 \int \left (-\frac {4}{(4+x)^2}+\frac {1}{4+x}\right ) \, dx-\int \left (1280 e^x-256 e^x x+48 e^x x^2-8 e^x x^3+e^x x^4+\frac {4096 e^x}{(4+x)^2}-\frac {6144 e^x}{4+x}\right ) \, dx\\ &=7 x^2-x^3-2 \int e^{-\frac {2 x (3+x)}{4+x}} x \, dx+2 \int e^{-\frac {2 x (3+x)}{4+x}} x^2 \, dx-8 \int e^{-\frac {2 x (3+x)}{4+x}} \, dx+8 \int e^x x^3 \, dx-12 \int e^x x^3 \, dx-2 \left (48 \int e^x x^2 \, dx\right )-64 \int e^x x \, dx+64 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{4+x} \, dx+96 \int e^x x^2 \, dx-128 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2} \, dx+256 \int e^x x \, dx+384 \int e^x x \, dx+512 \int e^x \, dx-576 \int e^x x \, dx-1280 \int e^x \, dx-2304 \int e^x \, dx+3072 \int e^x \, dx-3072 \int \frac {e^x}{4+x} \, dx+6144 \int \frac {e^x}{4+x} \, dx+12288 \int \frac {e^x}{4+x} \, dx-15360 \int \frac {e^x}{4+x} \, dx-\int e^x x^4 \, dx\\ &=7 x^2+96 e^x x^2-x^3-4 e^x x^3-e^x x^4-2 \int e^{-\frac {2 x (3+x)}{4+x}} x \, dx+2 \int e^{-\frac {2 x (3+x)}{4+x}} x^2 \, dx+4 \int e^x x^3 \, dx-8 \int e^{-\frac {2 x (3+x)}{4+x}} \, dx-24 \int e^x x^2 \, dx+36 \int e^x x^2 \, dx+64 \int e^x \, dx+64 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{4+x} \, dx-2 \left (48 e^x x^2-96 \int e^x x \, dx\right )-128 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2} \, dx-192 \int e^x x \, dx-256 \int e^x \, dx-384 \int e^x \, dx+576 \int e^x \, dx\\ &=-192 e^x x+7 x^2+108 e^x x^2-x^3-e^x x^4-2 \int e^{-\frac {2 x (3+x)}{4+x}} x \, dx+2 \int e^{-\frac {2 x (3+x)}{4+x}} x^2 \, dx-8 \int e^{-\frac {2 x (3+x)}{4+x}} \, dx-12 \int e^x x^2 \, dx+48 \int e^x x \, dx+64 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{4+x} \, dx-72 \int e^x x \, dx-2 \left (-96 e^x x+48 e^x x^2+96 \int e^x \, dx\right )-128 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2} \, dx+192 \int e^x \, dx\\ &=192 e^x-216 e^x x+7 x^2+96 e^x x^2-x^3-e^x x^4-2 \left (96 e^x-96 e^x x+48 e^x x^2\right )-2 \int e^{-\frac {2 x (3+x)}{4+x}} x \, dx+2 \int e^{-\frac {2 x (3+x)}{4+x}} x^2 \, dx-8 \int e^{-\frac {2 x (3+x)}{4+x}} \, dx+24 \int e^x x \, dx-48 \int e^x \, dx+64 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{4+x} \, dx+72 \int e^x \, dx-128 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2} \, dx\\ &=216 e^x-192 e^x x+7 x^2+96 e^x x^2-x^3-e^x x^4-2 \left (96 e^x-96 e^x x+48 e^x x^2\right )-2 \int e^{-\frac {2 x (3+x)}{4+x}} x \, dx+2 \int e^{-\frac {2 x (3+x)}{4+x}} x^2 \, dx-8 \int e^{-\frac {2 x (3+x)}{4+x}} \, dx-24 \int e^x \, dx+64 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{4+x} \, dx-128 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2} \, dx\\ &=192 e^x-192 e^x x+7 x^2+96 e^x x^2-x^3-e^x x^4-2 \left (96 e^x-96 e^x x+48 e^x x^2\right )-2 \int e^{-\frac {2 x (3+x)}{4+x}} x \, dx+2 \int e^{-\frac {2 x (3+x)}{4+x}} x^2 \, dx-8 \int e^{-\frac {2 x (3+x)}{4+x}} \, dx+64 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{4+x} \, dx-128 \int \frac {e^{-\frac {2 x (3+x)}{4+x}}}{(4+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 32, normalized size = 0.94 \begin {gather*} x^2 \left (7-e^{-\frac {2 x (3+x)}{4+x}}-x-e^x x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 40, normalized size = 1.18 \begin {gather*} -x^{3} + 7 \, x^{2} - {\left (x^{4} + x^{2} e^{\left (-\frac {3 \, x^{2} + 10 \, x}{x + 4}\right )}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 38, normalized size = 1.12 \begin {gather*} -x^{4} e^{x} - x^{3} - x^{2} e^{\left (-\frac {2 \, {\left (x^{2} + 3 \, x\right )}}{x + 4}\right )} + 7 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 36, normalized size = 1.06
method | result | size |
risch | \(-{\mathrm e}^{x} x^{4}-x^{2} {\mathrm e}^{-\frac {2 \left (3+x \right ) x}{4+x}}-x^{3}+7 x^{2}\) | \(36\) |
norman | \(\frac {28 x^{2}+3 x^{3}-x^{4}-x^{5} {\mathrm e}^{x}-4 \,{\mathrm e}^{x} x^{4}-4 \,{\mathrm e}^{x} x^{2} {\mathrm e}^{\frac {-3 x^{2}-10 x}{4+x}}-{\mathrm e}^{x} x^{3} {\mathrm e}^{\frac {-3 x^{2}-10 x}{4+x}}}{4+x}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 40, normalized size = 1.18 \begin {gather*} -x^{3} + 7 \, x^{2} - {\left (x^{4} e^{\left (3 \, x\right )} + x^{2} e^{\left (-\frac {8}{x + 4} + 2\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.07, size = 44, normalized size = 1.29 \begin {gather*} 7\,x^2-x^4\,{\mathrm {e}}^x-x^3-x^2\,{\mathrm {e}}^{x-\frac {10\,x}{x+4}-\frac {3\,x^2}{x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.01, size = 36, normalized size = 1.06 \begin {gather*} - x^{4} e^{x} - x^{3} - x^{2} e^{x} e^{\frac {- 3 x^{2} - 10 x}{x + 4}} + 7 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________