Optimal. Leaf size=17 \[ \left (5+x^2\right ) \left (e^2+x+\frac {\log (x)}{4}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 43, normalized size of antiderivative = 2.53, number of steps used = 7, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {6, 12, 14, 2304} \begin {gather*} x^3+\frac {1}{8} \left (1+8 e^2\right ) x^2-\frac {x^2}{8}+\frac {1}{4} x^2 \log (x)+5 x+\frac {5 \log (x)}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+20 x+\left (1+8 e^2\right ) x^2+12 x^3+2 x^2 \log (x)}{4 x} \, dx\\ &=\frac {1}{4} \int \frac {5+20 x+\left (1+8 e^2\right ) x^2+12 x^3+2 x^2 \log (x)}{x} \, dx\\ &=\frac {1}{4} \int \left (\frac {5+20 x+\left (1+8 e^2\right ) x^2+12 x^3}{x}+2 x \log (x)\right ) \, dx\\ &=\frac {1}{4} \int \frac {5+20 x+\left (1+8 e^2\right ) x^2+12 x^3}{x} \, dx+\frac {1}{2} \int x \log (x) \, dx\\ &=-\frac {x^2}{8}+\frac {1}{4} x^2 \log (x)+\frac {1}{4} \int \left (20+\frac {5}{x}+\left (1+8 e^2\right ) x+12 x^2\right ) \, dx\\ &=5 x-\frac {x^2}{8}+\frac {1}{8} \left (1+8 e^2\right ) x^2+x^3+\frac {5 \log (x)}{4}+\frac {1}{4} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 1.71 \begin {gather*} 5 x+e^2 x^2+x^3+\frac {5 \log (x)}{4}+\frac {1}{4} x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 22, normalized size = 1.29 \begin {gather*} x^{3} + x^{2} e^{2} + \frac {1}{4} \, {\left (x^{2} + 5\right )} \log \relax (x) + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 1.41 \begin {gather*} x^{3} + x^{2} e^{2} + \frac {1}{4} \, x^{2} \log \relax (x) + 5 \, x + \frac {5}{4} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.47
method | result | size |
default | \(\frac {x^{2} \ln \relax (x )}{4}+x^{2} {\mathrm e}^{2}+x^{3}+5 x +\frac {5 \ln \relax (x )}{4}\) | \(25\) |
norman | \(\frac {x^{2} \ln \relax (x )}{4}+x^{2} {\mathrm e}^{2}+x^{3}+5 x +\frac {5 \ln \relax (x )}{4}\) | \(25\) |
risch | \(\frac {x^{2} \ln \relax (x )}{4}+x^{2} {\mathrm e}^{2}+x^{3}+5 x +\frac {5 \ln \relax (x )}{4}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 24, normalized size = 1.41 \begin {gather*} x^{3} + x^{2} e^{2} + \frac {1}{4} \, x^{2} \log \relax (x) + 5 \, x + \frac {5}{4} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.18, size = 24, normalized size = 1.41 \begin {gather*} 5\,x+\frac {5\,\ln \relax (x)}{4}+\frac {x^2\,\ln \relax (x)}{4}+x^2\,{\mathrm {e}}^2+x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 27, normalized size = 1.59 \begin {gather*} x^{3} + \frac {x^{2} \log {\relax (x )}}{4} + x^{2} e^{2} + 5 x + \frac {5 \log {\relax (x )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________