Optimal. Leaf size=23 \[ \frac {4 x^2 (5+x)}{\frac {e^{x^2}}{5}+x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {100 x^4+e^{x^2} \left (200 x+60 x^2-200 x^3-40 x^4\right )}{e^{2 x^2}+10 e^{x^2} x^2+25 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100 x^4+e^{x^2} \left (200 x+60 x^2-200 x^3-40 x^4\right )}{\left (e^{x^2}+5 x^2\right )^2} \, dx\\ &=\int \left (\frac {200 x^3 \left (-5-x+5 x^2+x^3\right )}{\left (e^{x^2}+5 x^2\right )^2}-\frac {20 x \left (-10-3 x+10 x^2+2 x^3\right )}{e^{x^2}+5 x^2}\right ) \, dx\\ &=-\left (20 \int \frac {x \left (-10-3 x+10 x^2+2 x^3\right )}{e^{x^2}+5 x^2} \, dx\right )+200 \int \frac {x^3 \left (-5-x+5 x^2+x^3\right )}{\left (e^{x^2}+5 x^2\right )^2} \, dx\\ &=-\left (20 \int \left (-\frac {10 x}{e^{x^2}+5 x^2}-\frac {3 x^2}{e^{x^2}+5 x^2}+\frac {10 x^3}{e^{x^2}+5 x^2}+\frac {2 x^4}{e^{x^2}+5 x^2}\right ) \, dx\right )+200 \int \left (-\frac {5 x^3}{\left (e^{x^2}+5 x^2\right )^2}-\frac {x^4}{\left (e^{x^2}+5 x^2\right )^2}+\frac {5 x^5}{\left (e^{x^2}+5 x^2\right )^2}+\frac {x^6}{\left (e^{x^2}+5 x^2\right )^2}\right ) \, dx\\ &=-\left (40 \int \frac {x^4}{e^{x^2}+5 x^2} \, dx\right )+60 \int \frac {x^2}{e^{x^2}+5 x^2} \, dx-200 \int \frac {x^4}{\left (e^{x^2}+5 x^2\right )^2} \, dx+200 \int \frac {x^6}{\left (e^{x^2}+5 x^2\right )^2} \, dx+200 \int \frac {x}{e^{x^2}+5 x^2} \, dx-200 \int \frac {x^3}{e^{x^2}+5 x^2} \, dx-1000 \int \frac {x^3}{\left (e^{x^2}+5 x^2\right )^2} \, dx+1000 \int \frac {x^5}{\left (e^{x^2}+5 x^2\right )^2} \, dx\\ &=-\left (40 \int \frac {x^4}{e^{x^2}+5 x^2} \, dx\right )+60 \int \frac {x^2}{e^{x^2}+5 x^2} \, dx+100 \operatorname {Subst}\left (\int \frac {1}{e^x+5 x} \, dx,x,x^2\right )-100 \operatorname {Subst}\left (\int \frac {x}{e^x+5 x} \, dx,x,x^2\right )-200 \int \frac {x^4}{\left (e^{x^2}+5 x^2\right )^2} \, dx+200 \int \frac {x^6}{\left (e^{x^2}+5 x^2\right )^2} \, dx-500 \operatorname {Subst}\left (\int \frac {x}{\left (e^x+5 x\right )^2} \, dx,x,x^2\right )+500 \operatorname {Subst}\left (\int \frac {x^2}{\left (e^x+5 x\right )^2} \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 21, normalized size = 0.91 \begin {gather*} \frac {20 x^2 (5+x)}{e^{x^2}+5 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 23, normalized size = 1.00 \begin {gather*} \frac {20 \, {\left (x^{3} + 5 \, x^{2}\right )}}{5 \, x^{2} + e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 23, normalized size = 1.00 \begin {gather*} \frac {20 \, {\left (x^{3} + 5 \, x^{2}\right )}}{5 \, x^{2} + e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.91
method | result | size |
risch | \(\frac {20 x^{2} \left (5+x \right )}{5 x^{2}+{\mathrm e}^{x^{2}}}\) | \(21\) |
norman | \(\frac {20 x^{3}+100 x^{2}}{5 x^{2}+{\mathrm e}^{x^{2}}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 1.00 \begin {gather*} \frac {20 \, {\left (x^{3} + 5 \, x^{2}\right )}}{5 \, x^{2} + e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.98, size = 20, normalized size = 0.87 \begin {gather*} \frac {20\,x^2\,\left (x+5\right )}{{\mathrm {e}}^{x^2}+5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.83 \begin {gather*} \frac {20 x^{3} + 100 x^{2}}{5 x^{2} + e^{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________