Optimal. Leaf size=26 \[ \frac {3 x}{e^{3+x}+\frac {e^{x^2} x}{3}-\log (\log (3))} \]
________________________________________________________________________________________
Rubi [F] time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{3+x} (27-27 x)-18 e^{x^2} x^3-27 \log (\log (3))}{9 e^{6+2 x}+6 e^{3+x+x^2} x+e^{2 x^2} x^2+\left (-18 e^{3+x}-6 e^{x^2} x\right ) \log (\log (3))+9 \log ^2(\log (3))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 \left (-3 e^{3+x} (-1+x)-2 e^{x^2} x^3-3 \log (\log (3))\right )}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx\\ &=9 \int \frac {-3 e^{3+x} (-1+x)-2 e^{x^2} x^3-3 \log (\log (3))}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx\\ &=9 \int \left (-\frac {2 x^2}{3 e^{3+x}+e^{x^2} x-3 \log (\log (3))}+\frac {3 \left (e^{3+x}-e^{3+x} x+2 e^{3+x} x^2-\log (\log (3))-2 x^2 \log (\log (3))\right )}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2}\right ) \, dx\\ &=-\left (18 \int \frac {x^2}{3 e^{3+x}+e^{x^2} x-3 \log (\log (3))} \, dx\right )+27 \int \frac {e^{3+x}-e^{3+x} x+2 e^{3+x} x^2-\log (\log (3))-2 x^2 \log (\log (3))}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx\\ &=-\left (18 \int \frac {x^2}{3 e^{3+x}+e^{x^2} x-3 \log (\log (3))} \, dx\right )+27 \int \left (\frac {e^{3+x}}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2}-\frac {e^{3+x} x}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2}+\frac {2 e^{3+x} x^2}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2}-\frac {\log (\log (3))}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2}-\frac {2 x^2 \log (\log (3))}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2}\right ) \, dx\\ &=-\left (18 \int \frac {x^2}{3 e^{3+x}+e^{x^2} x-3 \log (\log (3))} \, dx\right )+27 \int \frac {e^{3+x}}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx-27 \int \frac {e^{3+x} x}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx+54 \int \frac {e^{3+x} x^2}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx-(27 \log (\log (3))) \int \frac {1}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx-(54 \log (\log (3))) \int \frac {x^2}{\left (3 e^{3+x}+e^{x^2} x-3 \log (\log (3))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 25, normalized size = 0.96 \begin {gather*} \frac {9 x}{3 e^{3+x}+e^{x^2} x-3 \log (\log (3))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 36, normalized size = 1.38 \begin {gather*} \frac {9 \, x e^{\left (x^{2}\right )}}{x e^{\left (2 \, x^{2}\right )} - 3 \, e^{\left (x^{2}\right )} \log \left (\log \relax (3)\right ) + 3 \, e^{\left (x^{2} + x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 23, normalized size = 0.88 \begin {gather*} \frac {9 \, x}{x e^{\left (x^{2}\right )} + 3 \, e^{\left (x + 3\right )} - 3 \, \log \left (\log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 25, normalized size = 0.96
method | result | size |
risch | \(-\frac {9 x}{-{\mathrm e}^{x^{2}} x +3 \ln \left (\ln \relax (3)\right )-3 \,{\mathrm e}^{3+x}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 23, normalized size = 0.88 \begin {gather*} \frac {9 \, x}{x e^{\left (x^{2}\right )} + 3 \, e^{\left (x + 3\right )} - 3 \, \log \left (\log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {27\,\ln \left (\ln \relax (3)\right )+18\,x^3\,{\mathrm {e}}^{x^2}+{\mathrm {e}}^{x+3}\,\left (27\,x-27\right )}{9\,{\mathrm {e}}^{2\,x+6}+9\,{\ln \left (\ln \relax (3)\right )}^2-\ln \left (\ln \relax (3)\right )\,\left (18\,{\mathrm {e}}^{x+3}+6\,x\,{\mathrm {e}}^{x^2}\right )+x^2\,{\mathrm {e}}^{2\,x^2}+6\,x\,{\mathrm {e}}^{x+3}\,{\mathrm {e}}^{x^2}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.85 \begin {gather*} \frac {9 x}{x e^{x^{2}} + 3 e^{x + 3} - 3 \log {\left (\log {\relax (3 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________