Optimal. Leaf size=27 \[ \frac {5}{e^{e^2+x}-x+\frac {x (16+x)}{1-x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-75-20 x+10 x^2+e^{e^2+x} \left (-5+10 x-5 x^2\right )}{225 x^2+60 x^3+4 x^4+e^{2 e^2+2 x} \left (1-2 x+x^2\right )+e^{e^2+x} \left (30 x-26 x^2-4 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-15-e^{e^2+x} (-1+x)^2-4 x+2 x^2\right )}{\left (e^{e^2+x} (-1+x)-x (15+2 x)\right )^2} \, dx\\ &=5 \int \frac {-15-e^{e^2+x} (-1+x)^2-4 x+2 x^2}{\left (e^{e^2+x} (-1+x)-x (15+2 x)\right )^2} \, dx\\ &=5 \int \left (\frac {-1+x}{e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2}-\frac {15-11 x+11 x^2+2 x^3}{\left (-e^{e^2+x}-15 x+e^{e^2+x} x-2 x^2\right )^2}\right ) \, dx\\ &=5 \int \frac {-1+x}{e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2} \, dx-5 \int \frac {15-11 x+11 x^2+2 x^3}{\left (-e^{e^2+x}-15 x+e^{e^2+x} x-2 x^2\right )^2} \, dx\\ &=-\left (5 \int \left (\frac {15}{\left (-e^{e^2+x}-15 x+e^{e^2+x} x-2 x^2\right )^2}-\frac {11 x}{\left (e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2\right )^2}+\frac {11 x^2}{\left (e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2\right )^2}+\frac {2 x^3}{\left (e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2\right )^2}\right ) \, dx\right )+5 \int \left (\frac {1}{-e^{e^2+x}-15 x+e^{e^2+x} x-2 x^2}+\frac {x}{e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2}\right ) \, dx\\ &=5 \int \frac {1}{-e^{e^2+x}-15 x+e^{e^2+x} x-2 x^2} \, dx+5 \int \frac {x}{e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2} \, dx-10 \int \frac {x^3}{\left (e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2\right )^2} \, dx+55 \int \frac {x}{\left (e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2\right )^2} \, dx-55 \int \frac {x^2}{\left (e^{e^2+x}+15 x-e^{e^2+x} x+2 x^2\right )^2} \, dx-75 \int \frac {1}{\left (-e^{e^2+x}-15 x+e^{e^2+x} x-2 x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 27, normalized size = 1.00 \begin {gather*} -\frac {5 (-1+x)}{-e^{e^2+x} (-1+x)+x (15+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.42, size = 26, normalized size = 0.96 \begin {gather*} -\frac {5 \, {\left (x - 1\right )}}{2 \, x^{2} - {\left (x - 1\right )} e^{\left (x + e^{2}\right )} + 15 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 29, normalized size = 1.07 \begin {gather*} -\frac {5 \, {\left (x - 1\right )}}{2 \, x^{2} - x e^{\left (x + e^{2}\right )} + 15 \, x + e^{\left (x + e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.56, size = 30, normalized size = 1.11
method | result | size |
risch | \(-\frac {5 \left (x -1\right )}{2 x^{2}-{\mathrm e}^{x +{\mathrm e}^{2}} x +15 x +{\mathrm e}^{x +{\mathrm e}^{2}}}\) | \(30\) |
norman | \(\frac {-5 x +5}{2 x^{2}-{\mathrm e}^{x +{\mathrm e}^{2}} x +15 x +{\mathrm e}^{x +{\mathrm e}^{2}}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 31, normalized size = 1.15 \begin {gather*} -\frac {5 \, {\left (x - 1\right )}}{2 \, x^{2} - {\left (x e^{\left (e^{2}\right )} - e^{\left (e^{2}\right )}\right )} e^{x} + 15 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {20\,x+{\mathrm {e}}^{x+{\mathrm {e}}^2}\,\left (5\,x^2-10\,x+5\right )-10\,x^2+75}{{\mathrm {e}}^{2\,x+2\,{\mathrm {e}}^2}\,\left (x^2-2\,x+1\right )-{\mathrm {e}}^{x+{\mathrm {e}}^2}\,\left (4\,x^3+26\,x^2-30\,x\right )+225\,x^2+60\,x^3+4\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 22, normalized size = 0.81 \begin {gather*} \frac {5 x - 5}{- 2 x^{2} - 15 x + \left (x - 1\right ) e^{x + e^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________