Optimal. Leaf size=34 \[ x^2 \log \left (x \left (-e^3-x+\frac {x}{i \pi +\log (-5+3 (3+e))}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.31, antiderivative size = 32, normalized size of antiderivative = 0.94, number of steps used = 10, number of rules used = 7, integrand size = 132, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {6741, 6688, 6742, 77, 2495, 30, 43} \begin {gather*} x^2 \log \left (-x \left (e^3+x \left (1-\frac {1}{\log (4+3 e)+i \pi }\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 43
Rule 77
Rule 2495
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^2-\left (e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))-\left (-2 x^2+\left (2 e^3 x+2 x^2\right ) (i \pi +\log (4+3 e))\right ) \log \left (\frac {x^2+\left (-e^3 x-x^2\right ) (i \pi +\log (4+3 e))}{i \pi +\log (4+3 e)}\right )}{x (1-i \pi -\log (4+3 e))-e^3 (i \pi +\log (4+3 e))} \, dx\\ &=\int \frac {x \left (2 x-\left (e^3+2 x\right ) (i \pi +\log (4+3 e))-2 \left (-x+\left (e^3+x\right ) (i \pi +\log (4+3 e))\right ) \log \left (x \left (-e^3+x \left (-1+\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right )\right )}{x (1-i \pi -\log (4+3 e))-e^3 (i \pi +\log (4+3 e))} \, dx\\ &=\int \left (\frac {x \left (2 x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))\right )}{x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))}+2 x \log \left (x \left (-e^3-x \left (1-\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right )\right ) \, dx\\ &=2 \int x \log \left (x \left (-e^3+x \left (-1+\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right ) \, dx+\int \frac {x \left (2 x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))\right )}{x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))} \, dx\\ &=x^2 \log \left (-x \left (e^3+x \left (1-\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right )+\left (1-\frac {1}{i \pi +\log (4+3 e)}\right ) \int \frac {x^2}{-e^3+x \left (-1+\frac {1}{i \pi +\log (4+3 e)}\right )} \, dx-\int x \, dx+\int \left (2 x+\frac {e^6 (\pi -i \log (4+3 e))^2}{(\pi +i (1-\log (4+3 e))) \left (x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))\right )}+\frac {e^3 (-\pi +i \log (4+3 e))}{\pi +i (1-\log (4+3 e))}\right ) \, dx\\ &=\frac {x^2}{2}-\frac {e^3 x (\pi -i \log (4+3 e))}{\pi +i (1-\log (4+3 e))}+\frac {e^6 (\pi -i \log (4+3 e))^2 \log \left (x (\pi +i (1-\log (4+3 e)))+e^3 (\pi -i \log (4+3 e))\right )}{(\pi +i (1-\log (4+3 e)))^2}+x^2 \log \left (-x \left (e^3+x \left (1-\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right )+\left (1-\frac {1}{i \pi +\log (4+3 e)}\right ) \int \left (\frac {e^3 (\pi -i \log (4+3 e))^2}{(\pi +i (1-\log (4+3 e)))^2}+\frac {e^6 (\pi -i \log (4+3 e))^3}{(\pi +i (1-\log (4+3 e)))^2 \left (-x (\pi +i (1-\log (4+3 e)))-e^3 (\pi -i \log (4+3 e))\right )}+\frac {x (-\pi +i \log (4+3 e))}{\pi +i (1-\log (4+3 e))}\right ) \, dx\\ &=x^2 \log \left (-x \left (e^3+x \left (1-\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 31, normalized size = 0.91 \begin {gather*} x^2 \log \left (x \left (-e^3+x \left (-1+\frac {1}{i \pi +\log (4+3 e)}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 36, normalized size = 1.06 \begin {gather*} x^{2} \log \left (\frac {x^{2} - {\left (x^{2} + x e^{3}\right )} \log \left (-3 \, e - 4\right )}{\log \left (-3 \, e - 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.74, size = 1346, normalized size = 39.59 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.97, size = 39, normalized size = 1.15
method | result | size |
norman | \(x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) | \(39\) |
risch | \(x^{2} \ln \left (\frac {\left (-x \,{\mathrm e}^{3}-x^{2}\right ) \ln \left (-3 \,{\mathrm e}-4\right )+x^{2}}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) | \(39\) |
default | \(x^{2} \ln \left (\frac {x \left (-{\mathrm e}^{3} \ln \left (-3 \,{\mathrm e}-4\right )-\ln \left (-3 \,{\mathrm e}-4\right ) x +x \right )}{\ln \left (-3 \,{\mathrm e}-4\right )}\right )\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 689, normalized size = 20.26 \begin {gather*} -{\left (\frac {e^{3} \log \left (x {\left (\log \left (-3 \, e - 4\right ) - 1\right )} + e^{3} \log \left (-3 \, e - 4\right )\right ) \log \left (-3 \, e - 4\right )}{\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1} - \frac {x}{\log \left (-3 \, e - 4\right ) - 1}\right )} e^{3} \log \left (-3 \, e - 4\right ) - \frac {2 \, e^{6} \log \left (x {\left (\log \left (-3 \, e - 4\right ) - 1\right )} + e^{3} \log \left (-3 \, e - 4\right )\right ) \log \left (-3 \, e - 4\right )^{2}}{\log \left (-3 \, e - 4\right )^{3} - 3 \, \log \left (-3 \, e - 4\right )^{2} + 3 \, \log \left (-3 \, e - 4\right ) - 1} + {\left (\frac {2 \, e^{6} \log \left (x {\left (\log \left (-3 \, e - 4\right ) - 1\right )} + e^{3} \log \left (-3 \, e - 4\right )\right ) \log \left (-3 \, e - 4\right )^{2}}{\log \left (-3 \, e - 4\right )^{3} - 3 \, \log \left (-3 \, e - 4\right )^{2} + 3 \, \log \left (-3 \, e - 4\right ) - 1} + \frac {x^{2} {\left (\log \left (-3 \, e - 4\right ) - 1\right )} - 2 \, x e^{3} \log \left (-3 \, e - 4\right )}{\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1}\right )} \log \left (-3 \, e - 4\right ) + \frac {{\left ({\left (\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} \log \left (-3 \, e - 4\right ) - \log \left (-3 \, e - 4\right )^{2} + 2 \, \log \left (-3 \, e - 4\right ) - 1\right )} x^{2} \log \relax (x) + {\left (\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} x e^{3} \log \left (-3 \, e - 4\right ) - {\left ({\left (\log \left (-3 \, e - 4\right )^{2} + {\left (\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} \log \left (\log \left (-3 \, e - 4\right )\right ) - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} \log \left (-3 \, e - 4\right ) - \log \left (-3 \, e - 4\right )^{2} - {\left (\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} \log \left (\log \left (-3 \, e - 4\right )\right ) + 2 \, \log \left (-3 \, e - 4\right ) - 1\right )} x^{2} + {\left ({\left ({\left (\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} \log \left (-3 \, e - 4\right ) - \log \left (-3 \, e - 4\right )^{2} + 2 \, \log \left (-3 \, e - 4\right ) - 1\right )} x^{2} - {\left (\log \left (-3 \, e - 4\right )^{3} - \log \left (-3 \, e - 4\right )^{2}\right )} e^{6}\right )} \log \left (-x {\left (\log \left (-3 \, e - 4\right ) - 1\right )} - e^{3} \log \left (-3 \, e - 4\right )\right )}{{\left (\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1\right )} \log \left (-3 \, e - 4\right ) - \log \left (-3 \, e - 4\right )^{2} + 2 \, \log \left (-3 \, e - 4\right ) - 1} - \frac {x^{2} {\left (\log \left (-3 \, e - 4\right ) - 1\right )} - 2 \, x e^{3} \log \left (-3 \, e - 4\right )}{\log \left (-3 \, e - 4\right )^{2} - 2 \, \log \left (-3 \, e - 4\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.06, size = 38, normalized size = 1.12 \begin {gather*} x^2\,\ln \left (-\frac {\ln \left (-3\,\mathrm {e}-4\right )\,\left (x^2+{\mathrm {e}}^3\,x\right )-x^2}{\ln \left (-3\,\mathrm {e}-4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.91, size = 107, normalized size = 3.15 \begin {gather*} x^{2} \log {\left (- \frac {i \pi x^{2}}{\log {\left (4 + 3 e \right )} + i \pi } + \frac {x^{2}}{\log {\left (4 + 3 e \right )} + i \pi } - \frac {x^{2} \log {\left (4 + 3 e \right )}}{\log {\left (4 + 3 e \right )} + i \pi } - \frac {i \pi x e^{3}}{\log {\left (4 + 3 e \right )} + i \pi } - \frac {x e^{3} \log {\left (4 + 3 e \right )}}{\log {\left (4 + 3 e \right )} + i \pi } \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________