Optimal. Leaf size=32 \[ \frac {\log \left (-x+\frac {x}{3-x \left (4-4 \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 31.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6+27 x-28 x^2+8 x^3+4 x^2 \log \left (\frac {1}{4} (-2+x)\right )+\left (-24 x+44 x^2-16 x^3\right ) \log ^2\left (\frac {1}{4} (-2+x)\right )+\left (-16 x^2+8 x^3\right ) \log ^4\left (\frac {1}{4} (-2+x)\right )+\left (12-46 x+52 x^2-16 x^3+\left (40 x-84 x^2+32 x^3\right ) \log ^2\left (\frac {1}{4} (-2+x)\right )+\left (32 x^2-16 x^3\right ) \log ^4\left (\frac {1}{4} (-2+x)\right )\right ) \log \left (\frac {-2 x+4 x^2-4 x^2 \log ^2\left (\frac {1}{4} (-2+x)\right )}{3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )}\right )}{-6 x^3+23 x^4-26 x^5+8 x^6+\left (-20 x^4+42 x^5-16 x^6\right ) \log ^2\left (\frac {1}{4} (-2+x)\right )+\left (-16 x^5+8 x^6\right ) \log ^4\left (\frac {1}{4} (-2+x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8}{(-2+x) \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}-\frac {6}{(-2+x) x^3 \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}+\frac {27}{(-2+x) x^2 \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}-\frac {28}{(-2+x) x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}+\frac {4 \log \left (-\frac {1}{2}+\frac {x}{4}\right )}{(-2+x) x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}+\frac {4 (3-4 x) \log ^2\left (-\frac {1}{2}+\frac {x}{4}\right )}{x^2 \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}+\frac {8 \log ^4\left (-\frac {1}{2}+\frac {x}{4}\right )}{x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}-\frac {2 \log \left (-\frac {2 x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}{3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )}\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (-\frac {2 x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}{3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )}\right )}{x^3} \, dx\right )+4 \int \frac {\log \left (-\frac {1}{2}+\frac {x}{4}\right )}{(-2+x) x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx+4 \int \frac {(3-4 x) \log ^2\left (-\frac {1}{2}+\frac {x}{4}\right )}{x^2 \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx-6 \int \frac {1}{(-2+x) x^3 \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx+8 \int \frac {1}{(-2+x) \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx+8 \int \frac {\log ^4\left (-\frac {1}{2}+\frac {x}{4}\right )}{x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx+27 \int \frac {1}{(-2+x) x^2 \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx-28 \int \frac {1}{(-2+x) x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right ) \left (3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.76, size = 46, normalized size = 1.44 \begin {gather*} \frac {\log \left (-\frac {2 x \left (1-2 x+2 x \log ^2\left (\frac {1}{4} (-2+x)\right )\right )}{3-4 x+4 x \log ^2\left (\frac {1}{4} (-2+x)\right )}\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 45, normalized size = 1.41 \begin {gather*} \frac {\log \left (-\frac {2 \, {\left (2 \, x^{2} \log \left (\frac {1}{4} \, x - \frac {1}{2}\right )^{2} - 2 \, x^{2} + x\right )}}{4 \, x \log \left (\frac {1}{4} \, x - \frac {1}{2}\right )^{2} - 4 \, x + 3}\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.90, size = 568, normalized size = 17.75
method | result | size |
risch | \(-\frac {\ln \left (\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{x^{2}}+\frac {-2 i \pi \mathrm {csgn}\left (\frac {i x \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right ) \mathrm {csgn}\left (\frac {i x \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )\right ) \mathrm {csgn}\left (\frac {i}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )+i \pi \,\mathrm {csgn}\left (i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right ) \mathrm {csgn}\left (\frac {i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{3}+i \pi \,\mathrm {csgn}\left (\frac {i \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right ) \mathrm {csgn}\left (\frac {i x \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i x \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{\frac {3}{4}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x}\right )^{3}+2 i \pi +2 \ln \relax (x )+2 \ln \left (\frac {1}{2}+\left (\ln \left (\frac {x}{4}-\frac {1}{2}\right )^{2}-1\right ) x \right )}{2 x^{2}}\) | \(568\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 75, normalized size = 2.34 \begin {gather*} -\frac {-i \, \pi - \log \relax (2) + \log \left (4 \, {\left (4 \, \log \relax (2)^{2} - 4 \, \log \relax (2) \log \left (x - 2\right ) + \log \left (x - 2\right )^{2} - 1\right )} x + 3\right ) - \log \left (2 \, {\left (4 \, \log \relax (2)^{2} - 4 \, \log \relax (2) \log \left (x - 2\right ) + \log \left (x - 2\right )^{2} - 1\right )} x + 1\right ) - \log \relax (x)}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.60, size = 45, normalized size = 1.41 \begin {gather*} \frac {\ln \left (-\frac {2\,\left (2\,x^2\,{\ln \left (\frac {x}{4}-\frac {1}{2}\right )}^2-2\,x^2+x\right )}{4\,x\,{\ln \left (\frac {x}{4}-\frac {1}{2}\right )}^2-4\,x+3}\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.04, size = 46, normalized size = 1.44 \begin {gather*} \frac {\log {\left (\frac {- 4 x^{2} \log {\left (\frac {x}{4} - \frac {1}{2} \right )}^{2} + 4 x^{2} - 2 x}{4 x \log {\left (\frac {x}{4} - \frac {1}{2} \right )}^{2} - 4 x + 3} \right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________