Optimal. Leaf size=20 \[ e^{\frac {1}{72} (2-x)^2 (-1-2 x+\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 1.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {1}{72} \left (-4-4 x+7 x^2-2 x^3+\left (4-4 x+x^2\right ) \log (x)\right )\right ) \left (4-8 x+15 x^2-6 x^3+\left (-4 x+2 x^2\right ) \log (x)\right )}{72 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{72} \int \frac {\exp \left (\frac {1}{72} \left (-4-4 x+7 x^2-2 x^3+\left (4-4 x+x^2\right ) \log (x)\right )\right ) \left (4-8 x+15 x^2-6 x^3+\left (-4 x+2 x^2\right ) \log (x)\right )}{x} \, dx\\ &=\frac {1}{72} \int \frac {e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} (2-x) \left (2-3 x+6 x^2-2 x \log (x)\right )}{x} \, dx\\ &=\frac {1}{72} \int \left (\frac {e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} \left (4-8 x+15 x^2-6 x^3\right )}{x}+2 e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} (-2+x) \log (x)\right ) \, dx\\ &=\frac {1}{72} \int \frac {e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} \left (4-8 x+15 x^2-6 x^3\right )}{x} \, dx+\frac {1}{36} \int e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} (-2+x) \log (x) \, dx\\ &=\frac {1}{72} \int \left (-8 e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))}+\frac {4 e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))}}{x}+15 e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} x-6 e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} x^2\right ) \, dx+\frac {1}{36} \int \left (-2 e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} \log (x)+e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} x \log (x)\right ) \, dx\\ &=\frac {1}{36} \int e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} x \log (x) \, dx+\frac {1}{18} \int \frac {e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))}}{x} \, dx-\frac {1}{18} \int e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} \log (x) \, dx-\frac {1}{12} \int e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} x^2 \, dx-\frac {1}{9} \int e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} \, dx+\frac {5}{24} \int e^{-\frac {1}{72} (-2+x)^2 (1+2 x-\log (x))} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.86, size = 28, normalized size = 1.40 \begin {gather*} e^{-\frac {1}{72} (-2+x)^2 (1+2 x)} x^{\frac {1}{72} (-2+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 28, normalized size = 1.40 \begin {gather*} e^{\left (-\frac {1}{36} \, x^{3} + \frac {7}{72} \, x^{2} + \frac {1}{72} \, {\left (x^{2} - 4 \, x + 4\right )} \log \relax (x) - \frac {1}{18} \, x - \frac {1}{18}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 32, normalized size = 1.60 \begin {gather*} e^{\left (-\frac {1}{36} \, x^{3} + \frac {1}{72} \, x^{2} \log \relax (x) + \frac {7}{72} \, x^{2} - \frac {1}{18} \, x \log \relax (x) - \frac {1}{18} \, x + \frac {1}{18} \, \log \relax (x) - \frac {1}{18}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.20
method | result | size |
risch | \(x^{\frac {\left (x -2\right )^{2}}{72}} {\mathrm e}^{-\frac {\left (2 x +1\right ) \left (x -2\right )^{2}}{72}}\) | \(24\) |
norman | \({\mathrm e}^{\frac {\left (x^{2}-4 x +4\right ) \ln \relax (x )}{72}-\frac {x^{3}}{36}+\frac {7 x^{2}}{72}-\frac {x}{18}-\frac {1}{18}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{72} \, \int \frac {{\left (6 \, x^{3} - 15 \, x^{2} - 2 \, {\left (x^{2} - 2 \, x\right )} \log \relax (x) + 8 \, x - 4\right )} e^{\left (-\frac {1}{36} \, x^{3} + \frac {7}{72} \, x^{2} + \frac {1}{72} \, {\left (x^{2} - 4 \, x + 4\right )} \log \relax (x) - \frac {1}{18} \, x - \frac {1}{18}\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.35, size = 34, normalized size = 1.70 \begin {gather*} x^{\frac {x^2}{72}+\frac {1}{18}}\,{\mathrm {e}}^{-\frac {x\,\ln \relax (x)}{18}}\,{\mathrm {e}}^{-\frac {x}{18}}\,{\mathrm {e}}^{-\frac {1}{18}}\,{\mathrm {e}}^{-\frac {x^3}{36}}\,{\mathrm {e}}^{\frac {7\,x^2}{72}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 34, normalized size = 1.70 \begin {gather*} e^{- \frac {x^{3}}{36} + \frac {7 x^{2}}{72} - \frac {x}{18} + \left (\frac {x^{2}}{72} - \frac {x}{18} + \frac {1}{18}\right ) \log {\relax (x )} - \frac {1}{18}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________