Optimal. Leaf size=24 \[ \log (5)-\log \left (5-\log (2 x) \log \left (e^{(2+x)^2}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.36, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 3, number of rules used = 3, integrand size = 116, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 6708, 31} \begin {gather*} -\log \left (5-\log (2 x) \log \left (x+e^{(x+2)^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 6688
Rule 6708
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (1+2 e^{(2+x)^2} (2+x)\right ) \log (2 x)+\left (e^{(2+x)^2}+x\right ) \log \left (e^{(2+x)^2}+x\right )}{x \left (e^{(2+x)^2}+x\right ) \left (5-\log (2 x) \log \left (e^{(2+x)^2}+x\right )\right )} \, dx\\ &=\operatorname {Subst}\left (\int \frac {1}{5-x} \, dx,x,\log (2 x) \log \left (e^{(2+x)^2}+x\right )\right )\\ &=-\log \left (5-\log (2 x) \log \left (e^{(2+x)^2}+x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.58, size = 24, normalized size = 1.00 \begin {gather*} -\log \left (5-\log (2 x) \log \left (e^{4+4 x+x^2}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 37, normalized size = 1.54 \begin {gather*} -\log \left (\frac {\log \left (2 \, x\right ) \log \left (x + e^{\left (x^{2} + 4 \, x + 4\right )}\right ) - 5}{\log \left (2 \, x\right )}\right ) - \log \left (\log \left (2 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 22, normalized size = 0.92 \begin {gather*} -\log \left (\log \left (2 \, x\right ) \log \left (x + e^{\left (x^{2} + 4 \, x + 4\right )}\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 1.25
method | result | size |
risch | \(-\ln \left (\ln \left (2 x \right )\right )-\ln \left (\ln \left (x +{\mathrm e}^{\left (2+x \right )^{2}}\right )-\frac {5}{\ln \left (2 x \right )}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 40, normalized size = 1.67 \begin {gather*} -\log \left (\frac {{\left (\log \relax (2) + \log \relax (x)\right )} \log \left (x + e^{\left (x^{2} + 4 \, x + 4\right )}\right ) - 5}{\log \relax (2) + \log \relax (x)}\right ) - \log \left (\log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.88, size = 34, normalized size = 1.42 \begin {gather*} -\ln \left (\frac {\ln \left (2\,x\right )\,\ln \left (x+{\mathrm {e}}^{{\left (x+2\right )}^2}\right )-5}{\ln \left (2\,x\right )}\right )-\ln \left (\ln \left (2\,x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.98, size = 29, normalized size = 1.21 \begin {gather*} - \log {\left (\log {\left (x + e^{x^{2} + 4 x + 4} \right )} - \frac {5}{\log {\left (2 x \right )}} \right )} - \log {\left (\log {\left (2 x \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________