Optimal. Leaf size=28 \[ \log \left (-1+x+\frac {x-x^2 (1+x)^2}{3+x}-\log (5 x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9-6 x+x^2+18 x^3+16 x^4+3 x^5}{9 x-6 x^2-3 x^3+6 x^4+5 x^5+x^6+\left (9 x+6 x^2+x^3\right ) \log (5 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9-6 x+x^2+18 x^3+16 x^4+3 x^5}{x (3+x) \left (3-3 x+2 x^3+x^4+(3+x) \log (5 x)\right )} \, dx\\ &=\int \left (\frac {10}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)}+\frac {3}{x \left (3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)\right )}-\frac {3 x}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)}+\frac {7 x^2}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)}+\frac {3 x^3}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)}-\frac {39}{(3+x) \left (3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)\right )}\right ) \, dx\\ &=3 \int \frac {1}{x \left (3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)\right )} \, dx-3 \int \frac {x}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)} \, dx+3 \int \frac {x^3}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)} \, dx+7 \int \frac {x^2}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)} \, dx+10 \int \frac {1}{3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)} \, dx-39 \int \frac {1}{(3+x) \left (3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 33, normalized size = 1.18 \begin {gather*} -\log (3+x)+\log \left (3-3 x+2 x^3+x^4+3 \log (5 x)+x \log (5 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 28, normalized size = 1.00 \begin {gather*} \log \left (\frac {x^{4} + 2 \, x^{3} + {\left (x + 3\right )} \log \left (5 \, x\right ) - 3 \, x + 3}{x + 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 33, normalized size = 1.18 \begin {gather*} \log \left (x^{4} + 2 \, x^{3} + x \log \left (5 \, x\right ) - 3 \, x + 3 \, \log \left (5 \, x\right ) + 3\right ) - \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 0.93
method | result | size |
risch | \(\ln \left (\ln \left (5 x \right )+\frac {x^{4}+2 x^{3}-3 x +3}{3+x}\right )\) | \(26\) |
norman | \(-\ln \left (3+x \right )+\ln \left (x^{4}+2 x^{3}+x \ln \left (5 x \right )-3 x +3 \ln \left (5 x \right )+3\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 33, normalized size = 1.18 \begin {gather*} \log \left (\frac {x^{4} + 2 \, x^{3} + x {\left (\log \relax (5) - 3\right )} + {\left (x + 3\right )} \log \relax (x) + 3 \, \log \relax (5) + 3}{x + 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.62, size = 25, normalized size = 0.89 \begin {gather*} \ln \left (3\,x+\ln \left (5\,x\right )+\frac {39}{x+3}-x^2+x^3-12\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 22, normalized size = 0.79 \begin {gather*} \log {\left (\log {\left (5 x \right )} + \frac {x^{4} + 2 x^{3} - 3 x + 3}{x + 3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________