Optimal. Leaf size=30 \[ \log \left (\frac {-\frac {24}{5}-e^{3/x}}{x (-x+\log (3-x))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.67, antiderivative size = 30, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 134, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {6688, 6742, 6715, 2282, 36, 29, 31, 43, 6684} \begin {gather*} \log \left (5 e^{3/x}+24\right )-\log (x)-\log (x-\log (3-x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 43
Rule 2282
Rule 6684
Rule 6688
Rule 6715
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x \left (24 (7-2 x) x-5 e^{3/x} \left (-9-4 x+2 x^2\right )\right )-(-3+x) \left (24 x+5 e^{3/x} (3+x)\right ) \log (3-x)}{\left (24+5 e^{3/x}\right ) (3-x) x^2 (x-\log (3-x))} \, dx\\ &=\int \left (\frac {72}{\left (24+5 e^{3/x}\right ) x^2}+\frac {9 x+4 x^2-2 x^3-9 \log (3-x)+x^2 \log (3-x)}{(-3+x) x^2 (x-\log (3-x))}\right ) \, dx\\ &=72 \int \frac {1}{\left (24+5 e^{3/x}\right ) x^2} \, dx+\int \frac {9 x+4 x^2-2 x^3-9 \log (3-x)+x^2 \log (3-x)}{(-3+x) x^2 (x-\log (3-x))} \, dx\\ &=-\left (72 \operatorname {Subst}\left (\int \frac {1}{24+5 e^{3 x}} \, dx,x,\frac {1}{x}\right )\right )+\int \left (\frac {-3-x}{x^2}+\frac {4-x}{(-3+x) (x-\log (3-x))}\right ) \, dx\\ &=-\left (24 \operatorname {Subst}\left (\int \frac {1}{x (24+5 x)} \, dx,x,e^{3/x}\right )\right )+\int \frac {-3-x}{x^2} \, dx+\int \frac {4-x}{(-3+x) (x-\log (3-x))} \, dx\\ &=-\log (x-\log (3-x))+5 \operatorname {Subst}\left (\int \frac {1}{24+5 x} \, dx,x,e^{3/x}\right )+\int \left (-\frac {3}{x^2}-\frac {1}{x}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{3/x}\right )\\ &=\log \left (24+5 e^{3/x}\right )-\log (x)-\log (x-\log (3-x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 30, normalized size = 1.00 \begin {gather*} \log \left (24+5 e^{3/x}\right )-\log (x)-\log (x-\log (3-x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 29, normalized size = 0.97 \begin {gather*} -\log \relax (x) - \log \left (-x + \log \left (-x + 3\right )\right ) + \log \left (5 \, e^{\frac {3}{x}} + 24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 0.97 \begin {gather*} -\log \relax (x) - \log \left (-x + \log \left (-x + 3\right )\right ) + \log \left (5 \, e^{\frac {3}{x}} + 24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 28, normalized size = 0.93
method | result | size |
risch | \(-\ln \relax (x )+\ln \left ({\mathrm e}^{\frac {3}{x}}+\frac {24}{5}\right )-\ln \left (\ln \left (3-x \right )-x \right )\) | \(28\) |
norman | \(-\ln \relax (x )-\ln \left (x -\ln \left (3-x \right )\right )+\ln \left (5 \,{\mathrm e}^{\frac {3}{x}}+24\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 27, normalized size = 0.90 \begin {gather*} -\log \relax (x) - \log \left (-x + \log \left (-x + 3\right )\right ) + \log \left (e^{\frac {3}{x}} + \frac {24}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.36, size = 27, normalized size = 0.90 \begin {gather*} \ln \left ({\mathrm {e}}^{3/x}+\frac {24}{5}\right )-\ln \left (\ln \left (3-x\right )-x\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 20, normalized size = 0.67 \begin {gather*} - \log {\relax (x )} - \log {\left (- x + \log {\left (3 - x \right )} \right )} + \log {\left (e^{\frac {3}{x}} + \frac {24}{5} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________