Optimal. Leaf size=25 \[ -2+4 \left (\frac {x}{16}-\left (2 e^x+2 x\right )^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 82, normalized size of antiderivative = 3.28, number of steps used = 25, number of rules used = 5, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {12, 2194, 2176, 2196, 1594} \begin {gather*} 64 x^4+256 e^x x^3-2 x^3-4 e^x x^2+384 e^{2 x} x^2+\frac {x^2}{64}-2 e^{2 x} x-\frac {256 e^{3 x}}{3}+64 e^{4 x}+\frac {256}{3} e^{3 x} (3 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{32} \int \left (8192 e^{4 x}+x-192 x^2+8192 x^3+e^{3 x} (8192+24576 x)+e^{2 x} \left (-64+24448 x+24576 x^2\right )+e^x \left (-256 x+24448 x^2+8192 x^3\right )\right ) \, dx\\ &=\frac {x^2}{64}-2 x^3+64 x^4+\frac {1}{32} \int e^{3 x} (8192+24576 x) \, dx+\frac {1}{32} \int e^{2 x} \left (-64+24448 x+24576 x^2\right ) \, dx+\frac {1}{32} \int e^x \left (-256 x+24448 x^2+8192 x^3\right ) \, dx+256 \int e^{4 x} \, dx\\ &=64 e^{4 x}+\frac {x^2}{64}-2 x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)+\frac {1}{32} \int e^x x \left (-256+24448 x+8192 x^2\right ) \, dx+\frac {1}{32} \int \left (-64 e^{2 x}+24448 e^{2 x} x+24576 e^{2 x} x^2\right ) \, dx-256 \int e^{3 x} \, dx\\ &=-\frac {256 e^{3 x}}{3}+64 e^{4 x}+\frac {x^2}{64}-2 x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)+\frac {1}{32} \int \left (-256 e^x x+24448 e^x x^2+8192 e^x x^3\right ) \, dx-2 \int e^{2 x} \, dx+764 \int e^{2 x} x \, dx+768 \int e^{2 x} x^2 \, dx\\ &=-e^{2 x}-\frac {256 e^{3 x}}{3}+64 e^{4 x}+382 e^{2 x} x+\frac {x^2}{64}+384 e^{2 x} x^2-2 x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)-8 \int e^x x \, dx+256 \int e^x x^3 \, dx-382 \int e^{2 x} \, dx+764 \int e^x x^2 \, dx-768 \int e^{2 x} x \, dx\\ &=-192 e^{2 x}-\frac {256 e^{3 x}}{3}+64 e^{4 x}-8 e^x x-2 e^{2 x} x+\frac {x^2}{64}+764 e^x x^2+384 e^{2 x} x^2-2 x^3+256 e^x x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)+8 \int e^x \, dx+384 \int e^{2 x} \, dx-768 \int e^x x^2 \, dx-1528 \int e^x x \, dx\\ &=8 e^x-\frac {256 e^{3 x}}{3}+64 e^{4 x}-1536 e^x x-2 e^{2 x} x+\frac {x^2}{64}-4 e^x x^2+384 e^{2 x} x^2-2 x^3+256 e^x x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)+1528 \int e^x \, dx+1536 \int e^x x \, dx\\ &=1536 e^x-\frac {256 e^{3 x}}{3}+64 e^{4 x}-2 e^{2 x} x+\frac {x^2}{64}-4 e^x x^2+384 e^{2 x} x^2-2 x^3+256 e^x x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)-1536 \int e^x \, dx\\ &=-\frac {256 e^{3 x}}{3}+64 e^{4 x}-2 e^{2 x} x+\frac {x^2}{64}-4 e^x x^2+384 e^{2 x} x^2-2 x^3+256 e^x x^3+64 x^4+\frac {256}{3} e^{3 x} (1+3 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 1.08 \begin {gather*} \frac {1}{64} \left (64 e^{2 x}+128 e^x x+x (-1+64 x)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 59, normalized size = 2.36 \begin {gather*} 64 \, x^{4} - 2 \, x^{3} + \frac {1}{64} \, x^{2} + 256 \, x e^{\left (3 \, x\right )} + 2 \, {\left (192 \, x^{2} - x\right )} e^{\left (2 \, x\right )} + 4 \, {\left (64 \, x^{3} - x^{2}\right )} e^{x} + 64 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 59, normalized size = 2.36 \begin {gather*} 64 \, x^{4} - 2 \, x^{3} + \frac {1}{64} \, x^{2} + 256 \, x e^{\left (3 \, x\right )} + 2 \, {\left (192 \, x^{2} - x\right )} e^{\left (2 \, x\right )} + 4 \, {\left (64 \, x^{3} - x^{2}\right )} e^{x} + 64 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 60, normalized size = 2.40
method | result | size |
default | \(\frac {x^{2}}{64}-2 x^{3}+64 x^{4}+64 \,{\mathrm e}^{4 x}+256 x \,{\mathrm e}^{3 x}-2 x \,{\mathrm e}^{2 x}+384 \,{\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{x} x^{2}+256 \,{\mathrm e}^{x} x^{3}\) | \(60\) |
norman | \(\frac {x^{2}}{64}-2 x^{3}+64 x^{4}+64 \,{\mathrm e}^{4 x}+256 x \,{\mathrm e}^{3 x}-2 x \,{\mathrm e}^{2 x}+384 \,{\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{x} x^{2}+256 \,{\mathrm e}^{x} x^{3}\) | \(60\) |
risch | \(\frac {x^{2}}{64}-2 x^{3}+64 x^{4}+64 \,{\mathrm e}^{4 x}+256 x \,{\mathrm e}^{3 x}-2 x \,{\mathrm e}^{2 x}+384 \,{\mathrm e}^{2 x} x^{2}-4 \,{\mathrm e}^{x} x^{2}+256 \,{\mathrm e}^{x} x^{3}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 59, normalized size = 2.36 \begin {gather*} 64 \, x^{4} - 2 \, x^{3} + \frac {1}{64} \, x^{2} + 256 \, x e^{\left (3 \, x\right )} + 2 \, {\left (192 \, x^{2} - x\right )} e^{\left (2 \, x\right )} + 4 \, {\left (64 \, x^{3} - x^{2}\right )} e^{x} + 64 \, e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 24, normalized size = 0.96 \begin {gather*} \frac {{\left (64\,{\mathrm {e}}^{2\,x}-x+128\,x\,{\mathrm {e}}^x+64\,x^2\right )}^2}{64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.16, size = 56, normalized size = 2.24 \begin {gather*} 64 x^{4} - 2 x^{3} + \frac {x^{2}}{64} + 256 x e^{3 x} + \left (384 x^{2} - 2 x\right ) e^{2 x} + \left (256 x^{3} - 4 x^{2}\right ) e^{x} + 64 e^{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________