Optimal. Leaf size=31 \[ 5+\frac {(1+x) \log \left (-1+\frac {\log \left (-x+x \left (\frac {75}{x^2}+x\right )\right )}{\log (2)}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-75-75 x-x^2+x^3+2 x^4+\left (\left (75-x^2+x^3\right ) \log (2)+\left (-75+x^2-x^3\right ) \log \left (\frac {75-x^2+x^3}{x}\right )\right ) \log \left (\frac {-\log (2)+\log \left (\frac {75-x^2+x^3}{x}\right )}{\log (2)}\right )}{\left (-75 x^2+x^4-x^5\right ) \log (2)+\left (75 x^2-x^4+x^5\right ) \log \left (\frac {75-x^2+x^3}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {75+75 x+x^2-x^3-2 x^4-\left (\left (75-x^2+x^3\right ) \log (2)+\left (-75+x^2-x^3\right ) \log \left (\frac {75-x^2+x^3}{x}\right )\right ) \log \left (\frac {-\log (2)+\log \left (\frac {75-x^2+x^3}{x}\right )}{\log (2)}\right )}{x^2 \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx\\ &=\int \left (\frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}+\frac {75}{x^2 \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}+\frac {75}{x \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}-\frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}-\frac {2 x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}-\frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx\right )+75 \int \frac {1}{x^2 \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+75 \int \frac {1}{x \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x^2} \, dx\\ &=-\left (2 \int \frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx\right )+75 \int \left (\frac {1}{75 x^2 \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}+\frac {1-x}{75 \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}\right ) \, dx+75 \int \left (\frac {1}{75 x \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}-\frac {(-1+x) x}{75 \left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}\right ) \, dx+\int \frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x^2} \, dx\\ &=-\left (2 \int \frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx\right )+\int \frac {1}{x^2 \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1}{x \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1-x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {(-1+x) x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x^2} \, dx\\ &=-\left (2 \int \frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx\right )+\int \left (\frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}-\frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}\right ) \, dx-\int \left (-\frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}+\frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )}\right ) \, dx+\int \frac {1}{x^2 \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1}{x \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x^2} \, dx\\ &=-\left (2 \int \frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx\right )+\int \frac {1}{x^2 \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+\int \frac {1}{x \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx+2 \int \frac {1}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {x}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {x^2}{\left (75-x^2+x^3\right ) \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )} \, dx-\int \frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 45, normalized size = 1.45 \begin {gather*} \log \left (\log (2)-\log \left (\frac {75}{x}-x+x^2\right )\right )+\frac {\log \left (-1+\frac {\log \left (\frac {75}{x}-x+x^2\right )}{\log (2)}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 34, normalized size = 1.10 \begin {gather*} \frac {{\left (x + 1\right )} \log \left (-\frac {\log \relax (2) - \log \left (\frac {x^{3} - x^{2} + 75}{x}\right )}{\log \relax (2)}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 55, normalized size = 1.77 \begin {gather*} \frac {\log \left (-\log \relax (2) + \log \left (x^{3} - x^{2} + 75\right ) - \log \relax (x)\right )}{x} - \frac {\log \left (\log \relax (2)\right )}{x} + \log \left (-\log \relax (2) + \log \left (x^{3} - x^{2} + 75\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.08, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-x^{3}+x^{2}-75\right ) \ln \left (\frac {x^{3}-x^{2}+75}{x}\right )+\left (x^{3}-x^{2}+75\right ) \ln \relax (2)\right ) \ln \left (\frac {\ln \left (\frac {x^{3}-x^{2}+75}{x}\right )-\ln \relax (2)}{\ln \relax (2)}\right )+2 x^{4}+x^{3}-x^{2}-75 x -75}{\left (x^{5}-x^{4}+75 x^{2}\right ) \ln \left (\frac {x^{3}-x^{2}+75}{x}\right )+\left (-x^{5}+x^{4}-75 x^{2}\right ) \ln \relax (2)}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 35, normalized size = 1.13 \begin {gather*} \frac {{\left (x + 1\right )} \log \left (-\log \relax (2) + \log \left (x^{3} - x^{2} + 75\right ) - \log \relax (x)\right ) - \log \left (\log \relax (2)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.80, size = 55, normalized size = 1.77 \begin {gather*} \ln \left (\ln \left (\frac {x^3-x^2+75}{x}\right )-\ln \relax (2)\right )-\frac {\ln \left (\ln \relax (2)\right )}{x}+\frac {\ln \left (\ln \left (\frac {x^3-x^2+75}{x}\right )-\ln \relax (2)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.67, size = 37, normalized size = 1.19 \begin {gather*} \log {\left (\log {\left (\frac {x^{3} - x^{2} + 75}{x} \right )} - \log {\relax (2 )} \right )} + \frac {\log {\left (\frac {\log {\left (\frac {x^{3} - x^{2} + 75}{x} \right )} - \log {\relax (2 )}}{\log {\relax (2 )}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________